Suppr超能文献

用于监测老年人疼痛行为的自动化计算机视觉系统的实时评估。

Real-time evaluation of an automated computer vision system to monitor pain behavior in older adults.

作者信息

Stopyn Rhonda Jn, Moturu Abhishek, Taati Babak, Hadjistavropoulos Thomas

机构信息

University of Regina, Regina, SK, Canada.

Kite Research Institute|Toronto Rehab - UHN, Toronto, ON, Canada.

出版信息

J Rehabil Assist Technol Eng. 2025 Jan 12;12:20556683251313762. doi: 10.1177/20556683251313762. eCollection 2025 Jan-Dec.

Abstract

Regular use of standardized observational tools to assess nonverbal pain behaviors results in improved pain care for older adults with severe dementia. While frequent monitoring of pain behaviors in long-term care (LTC) is constrained by resource limitations, computer vision technology has the potential to mitigate these challenges. A computerized algorithm designed to assess pain behavior in older adults with and without dementia was recently developed and validated using video recordings. This study was the first live, real-time evaluation of the algorithm incorporated in an automated system with community-dwelling older adults in a laboratory. Three safely-administered thermal pain tasks were completed while the system automatically processed facial activity. Receiver Operating Characteristic curves were used to determine the sensitivity and specificity of the system in identifying facial pain expressions using gold standard manual coding. The relationship between scoring methods was analyzed and gender differences were explored. Results supported the potential viability of the system for use with older adults. System performance improved when more intense facial pain expressiveness was considered. While average pain scores remained homogenous between genders, system performance was better for women. Findings will be used to further refine the system prior to future field testing in LTC.

摘要

定期使用标准化观察工具评估非言语疼痛行为,可改善对患有严重痴呆症的老年人的疼痛护理。虽然长期护理(LTC)中对疼痛行为的频繁监测受到资源限制,但计算机视觉技术有潜力缓解这些挑战。最近开发了一种计算机算法,用于评估患有和未患有痴呆症的老年人的疼痛行为,并使用视频记录进行了验证。本研究是该算法在实验室中与社区居住的老年人的自动化系统中进行的首次现场实时评估。在系统自动处理面部活动的同时,完成了三项安全实施的热痛任务。使用接受者操作特征曲线,通过金标准手动编码来确定系统识别面部疼痛表情的敏感性和特异性。分析了评分方法之间的关系,并探讨了性别差异。结果支持了该系统用于老年人的潜在可行性。当考虑到更强烈的面部疼痛表现力时,系统性能有所提高。虽然男女平均疼痛评分保持一致,但系统对女性的性能更好。研究结果将用于在未来LTC现场测试之前进一步完善该系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd96/11726534/01ec09f43d45/10.1177_20556683251313762-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验