Suppr超能文献

基于深度学习的通过面部视频进行疼痛评估的实例可评估模型(EDi Pain):一项回顾性分析和一项前瞻性急诊科研究。

Deep Learning-Based Instance Appraisable Model (EDi Pain) for Pain Estimation via Facial Videos: A Retrospective Analysis and a Prospective Emergency Department Study.

作者信息

Yang Yi-Cheng, Cheng Wen-Hsiang, Lin En-Ting, Liu An-Sheng, Ko Chia-Hsin, Huang Chien-Hua, Tsai Chu-Lin, Fu Li-Chen

机构信息

Department of Computer Science and Information Engineering, National Taiwan University, CSIE Der Tian Hall No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan.

Department of Emergency Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, 7 Zhongshan S. Rd, Taipei, 100, Taiwan.

出版信息

J Imaging Inform Med. 2025 May 12. doi: 10.1007/s10278-025-01534-2.

Abstract

Pain assessment is a critical aspect of medical care, yet automated systems for clinical pain estimation remain rare. Tools such as the visual analog scale (VAS) are commonly used in emergency departments (EDs) but rely on subjective self-reporting, with pain intensity often fluctuating during triage. An effective automated system should utilize objective labels from healthcare professionals and identify key frames from video sequences for accurate inference. In this study, short video clips were treated as instance segments for the model, with ground truth (physician-rated VAS) provided at the video level. To address the weak label problem, we proposed flexible multiple instance learning approaches. Using a specialized loss function and sampling strategy, our instance-appraisable model, EDi Pain, was trained to estimate pain intensity while evaluating the significance of each instance segment. During inference, the VAS pain score for the entire video is derived from instance-level predictions. In retrospective analysis using the public UNBC-McMaster dataset, the EDi Pain model demonstrated competitive performance relative to prior studies, achieving strong performance in video-level pain intensity estimation, with a mean absolute error (MAE) of 1.85 and a Pearson correlation coefficient (PCC) of 0.63. Additionally, our model was validated on a prospectively collected dataset of 931 patients from National Taiwan University Hospital, yielding an MAE of 1.48 and a PCC of 0.22. In summary, we developed and validated a novel deep learning-based, instance-appraisable model for pain intensity estimation using facial videos. The EDi Pain model shows promise for real-time application in clinical settings, offering a more objective and dynamic approach to pain assessment.

摘要

疼痛评估是医疗护理的关键环节,但用于临床疼痛估计的自动化系统仍然很少见。诸如视觉模拟量表(VAS)之类的工具在急诊科(EDs)中常用,但依赖于主观的自我报告,在分诊期间疼痛强度经常波动。一个有效的自动化系统应该利用医疗专业人员的客观标签,并从视频序列中识别关键帧以进行准确推断。在本研究中,短视频片段被视为模型的实例段,并在视频级别提供了真实情况(医生评定的VAS)。为了解决弱标签问题,我们提出了灵活的多实例学习方法。使用专门的损失函数和采样策略,我们的实例可评估模型EDi Pain在评估每个实例段的重要性时被训练来估计疼痛强度。在推理过程中,整个视频的VAS疼痛评分来自实例级别的预测。在使用公共UNBC-McMaster数据集的回顾性分析中,EDi Pain模型相对于先前的研究表现出有竞争力的性能,在视频级疼痛强度估计中取得了强劲的性能,平均绝对误差(MAE)为1.85,皮尔逊相关系数(PCC)为0.63。此外,我们的模型在台湾大学医院前瞻性收集的931名患者的数据集中得到验证,MAE为1.48,PCC为0.22。总之,我们开发并验证了一种基于深度学习的新型实例可评估模型,用于使用面部视频估计疼痛强度。EDi Pain模型在临床环境中的实时应用显示出前景,为疼痛评估提供了一种更客观、动态的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验