Suppr超能文献

具有密度依赖速度的细胞迁移的非局部动理学模型的稳定性。

Stability of a non-local kinetic model for cell migration with density-dependent speed.

机构信息

Department of Mathematical Sciences 'G. L. Lagrange', Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

出版信息

Math Med Biol. 2021 Mar 15;38(1):83-105. doi: 10.1093/imammb/dqaa013.

Abstract

The aim of this article is to study the stability of a non-local kinetic model proposed by Loy & Preziosi (2020a) in which the cell speed is affected by the cell population density non-locally measured and weighted according to a sensing kernel in the direction of polarization and motion. We perform the analysis in a $d$-dimensional setting. We study the dispersion relation in the one-dimensional case and we show that the stability depends on two dimensionless parameters: the first one represents the stiffness of the system related to the cell turning rate, to the mean speed at equilibrium and to the sensing radius, while the second one relates to the derivative of the mean speed with respect to the density evaluated at the equilibrium. It is proved that for Dirac delta sensing kernels centered at a finite distance, corresponding to sensing limited to a given distance from the cell center, the homogeneous configuration is linearly unstable to short waves. On the other hand, for a uniform sensing kernel, corresponding to uniformly weighting the information collected up to a given distance, the most unstable wavelength is identified and consistently matches the numerical solution of the kinetic equation.

摘要

本文旨在研究 Loy 和 Preziosi(2020a)提出的非局部动力学模型的稳定性,该模型中细胞速度受到细胞群体密度的非局部影响,根据极化和运动方向上的感应核进行加权。我们在$d$维环境中进行分析。我们研究了一维情况下的频散关系,并表明稳定性取决于两个无量纲参数:第一个参数代表与细胞转向率、平衡时的平均速度和感应半径相关的系统刚度,而第二个参数则与平衡时速度对密度的导数相关。证明了对于位于有限距离处的 Dirac delta 感应核,即感应仅限于细胞中心的给定距离内,均匀配置对于短波是线性不稳定的。另一方面,对于均匀感应核,即均匀加权直到给定距离收集的信息,确定了最不稳定的波长,并且与动力学方程的数值解一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验