Choi Sun-Ho, Kim Yong-Jung
Department of Applied Mathematics and the Institute of Natural Sciences, Kyung Hee University, Yongin, 446-701, South Korea.
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea.
Bull Math Biol. 2017 Feb;79(2):277-302. doi: 10.1007/s11538-016-0235-4. Epub 2016 Dec 19.
We introduce a mesoscopic scale chemotaxis model for traveling wave phenomena which is induced by food metric. The organisms of this simplified kinetic model have two discrete velocity modes, [Formula: see text] and a constant tumbling rate. The main feature of the model is that the speed of organisms is constant [Formula: see text] with respect to the food metric, not the Euclidean metric. The uniqueness and the existence of the traveling wave solution of the model are obtained. Unlike the classical logarithmic model case there exist traveling waves under super-linear consumption rates and infinite population pulse-type traveling waves are obtained. Numerical simulations are also provided.
我们引入了一个介观尺度的趋化模型,用于研究由食物度量诱导的行波现象。这个简化动力学模型中的生物体具有两种离散速度模式,[公式:见原文]以及恒定的翻滚速率。该模型的主要特征是,生物体相对于食物度量的速度是恒定的[公式:见原文],而非欧几里得度量。我们得到了该模型行波解的唯一性和存在性。与经典对数模型情况不同,在超线性消耗率下存在行波,并且得到了无限种群脉冲型行波。我们还提供了数值模拟。