Suppr超能文献

开发和评估基于电子健康记录的儿童哮喘严重程度可计算表型。

Developing and evaluating a pediatric asthma severity computable phenotype derived from electronic health records.

机构信息

Department of Environmental Health, Boston University School of Public Health, Boston, Mass.

Boston Medical Center, Boston, Mass; Department of Pediatrics, Boston University School of Medicine, Boston, Mass.

出版信息

J Allergy Clin Immunol. 2021 Jun;147(6):2162-2170. doi: 10.1016/j.jaci.2020.11.045. Epub 2020 Dec 15.

Abstract

BACKGROUND

Extensive data available in electronic health records (EHRs) have the potential to improve asthma care and understanding of factors influencing asthma outcomes. However, this work can be accomplished only when the EHR data allow for accurate measures of severity, which at present are complex and inconsistent.

OBJECTIVE

Our aims were to create and evaluate a standardized pediatric asthma severity phenotype based in clinical asthma guidelines for use in EHR-based health initiatives and studies and also to examine the presence and absence of these data in relation to patient characteristics.

METHODS

We developed an asthma severity computable phenotype and compared the concordance of different severity components contributing to the phenotype to trends in the literature. We used multivariable logistic regression to assess the presence of EHR data relevant to asthma severity.

RESULTS

The asthma severity computable phenotype performs as expected in comparison with national statistics and the literature. Severity classification for a child is maximized when based on the long-term medication regimen component and minimized when based only on the symptom data component. Use of the severity phenotype results in better, clinically grounded classification. Children for whom severity could be ascertained from these EHR data were more likely to be seen for asthma in the outpatient setting and less likely to be older or Hispanic. Black children were less likely to have lung function testing data present.

CONCLUSION

We developed a pragmatic computable phenotype for pediatric asthma severity that is transportable to other EHRs.

摘要

背景

电子健康记录(EHR)中广泛的数据有可能改善哮喘护理,并深入了解影响哮喘结果的因素。然而,只有当 EHR 数据能够准确衡量严重程度时,才能完成这项工作,而目前严重程度的衡量方法既复杂又不一致。

目的

我们的目标是创建和评估一个基于临床哮喘指南的标准化儿科哮喘严重程度表型,用于基于 EHR 的健康计划和研究,同时还研究这些数据在与患者特征的关系中的存在和缺失情况。

方法

我们开发了一个哮喘严重程度可计算表型,并比较了不同严重程度成分与文献趋势的一致性。我们使用多变量逻辑回归来评估与哮喘严重程度相关的 EHR 数据的存在情况。

结果

与国家统计数据和文献相比,哮喘严重程度可计算表型的表现符合预期。基于长期药物治疗方案成分对儿童进行严重程度分类的最大化,而仅基于症状数据成分的最小化。使用严重程度表型可实现更好、更具临床意义的分类。从这些 EHR 数据中可以确定严重程度的儿童更有可能在门诊接受哮喘治疗,而不太可能年龄较大或为西班牙裔。黑人儿童不太可能有肺功能测试数据。

结论

我们开发了一种实用的儿科哮喘严重程度可计算表型,可移植到其他 EHR 中。

相似文献

3
Adult patient access to electronic health records.成年患者获取电子健康记录。
Cochrane Database Syst Rev. 2021 Feb 26;2(2):CD012707. doi: 10.1002/14651858.CD012707.pub2.

引用本文的文献

5
Asthma and Chronic Obstructive Pulmonary Disease.哮喘和慢性阻塞性肺疾病。
Clin Chest Med. 2023 Sep;44(3):519-530. doi: 10.1016/j.ccm.2023.03.008. Epub 2023 May 9.

本文引用的文献

1
The burden of exacerbations in mild asthma: a systematic review.轻度哮喘急性加重的负担:一项系统评价。
ERJ Open Res. 2020 Aug 11;6(3). doi: 10.1183/23120541.00359-2019. eCollection 2020 Jul.
4
Translational Health Disparities Research in a Data-Rich World.数据丰富的世界中的转化性健康差异研究。
Health Equity. 2019 Nov 8;3(1):588-600. doi: 10.1089/heq.2019.0042. eCollection 2019.
5
Approaches to the assessment of severe asthma: barriers and strategies.重度哮喘评估方法:障碍与策略
J Asthma Allergy. 2019 Aug 23;12:235-251. doi: 10.2147/JAA.S178927. eCollection 2019.
7
Future Risks in Patients With Severe Asthma.重度哮喘患者的未来风险
Allergy Asthma Immunol Res. 2019 Nov;11(6):763-778. doi: 10.4168/aair.2019.11.6.763.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验