Asabuwa Ngwabebhoh Fahanwi, Saha Nabanita, Nguyen Hau Trung, Brodnjak Urška Vrabič, Saha Tomas, Lengalova Anežka, Saha Petr
Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic.
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic.
Polymers (Basel). 2020 Dec 16;12(12):3016. doi: 10.3390/polym12123016.
Chromium-tanned leathers used in the manufacture of footwear and leather goods pose an environmental problem because they contain harmful chemicals and are very difficult to recycle. A solution to this problem can be composite materials from tree leaves, fruit residues and other fibrous agricultural products, which can replace chromium-tanned leather. The present study describes the preparation of biocomposite leather-like materials from microbial cellulose and maple leave fibers as bio-fillers. The formulation was optimized by design of experiment and the prepared biocomposites characterized by tensile test, FTIR, DMA, SEM, adhesion test, volume porosity, water absorptivity, surface wettability and shape stability. From the viewpoint of future use in the footwear industry, results obtained showed that the optimized material was considerably flexible with tensile strength of 2.13 ± 0.29 MPa, elastic modulus of 76.93 ± 1.63 MPa and porosity of 1570 ± 146 mL/min. In addition, the material depicted good shape stability and surface adhesive properties. The results indicate that a suitable treatment of biomass offers a way to prepare exploitable nonwoven fibrous composites for the footwear industry without further burdening the environment.
用于制造鞋类和皮革制品的铬鞣革会造成环境问题,因为它们含有有害化学物质且很难回收利用。解决这一问题的方法可以是使用由树叶、水果残渣和其他纤维状农产品制成的复合材料来替代铬鞣革。本研究描述了以微生物纤维素和枫叶纤维作为生物填料制备类似皮革的生物复合材料的过程。通过实验设计对配方进行了优化,并通过拉伸试验、傅里叶变换红外光谱(FTIR)、动态热机械分析(DMA)、扫描电子显微镜(SEM)、附着力测试、体积孔隙率、吸水性、表面润湿性和形状稳定性对制备的生物复合材料进行了表征。从未来在制鞋工业中的应用角度来看,所得结果表明,优化后的材料具有相当好的柔韧性,其拉伸强度为2.13±0.29兆帕,弹性模量为76.93±1.63兆帕,孔隙率为1570±146毫升/分钟。此外,该材料具有良好的形状稳定性和表面粘合性能。结果表明,对生物质进行适当处理可为制鞋工业制备可利用的非织造纤维复合材料提供一种方法,而不会给环境带来进一步负担。