Suppr超能文献

基于惯性传感器的步态参数反映多发性硬化症患者的疲劳感。

Inertial sensor-based gait parameters reflect patient-reported fatigue in multiple sclerosis.

机构信息

Machine Learning and Data Analytics Lab, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.

Computer Science Department, Faculty of Computers and Information, Assiut University, Asyut, Egypt.

出版信息

J Neuroeng Rehabil. 2020 Dec 18;17(1):165. doi: 10.1186/s12984-020-00798-9.

Abstract

BACKGROUND

Multiple sclerosis (MS) is a disabling disease affecting the central nervous system and consequently the whole body's functional systems resulting in different gait disorders. Fatigue is the most common symptom in MS with a prevalence of 80%. Previous research studied the relation between fatigue and gait impairment using stationary gait analysis systems and short gait tests (e.g. timed 25 ft walk). However, wearable inertial sensors providing gait data from longer and continuous gait bouts have not been used to assess the relation between fatigue and gait parameters in MS. Therefore, the aim of this study was to evaluate the association between fatigue and spatio-temporal gait parameters extracted from wearable foot-worn sensors and to predict the degree of fatigue.

METHODS

Forty-nine patients with MS (32 women; 17 men; aged 41.6 years, EDSS 1.0-6.5) were included where each participant was equipped with a small Inertial Measurement Unit (IMU) on each foot. Spatio-temporal gait parameters were obtained from the 6-min walking test, and the Borg scale of perceived exertion was used to represent fatigue. Gait parameters were normalized by taking the difference of averaged gait parameters between the beginning and end of the test to eliminate inter-individual differences. Afterwards, normalized parameters were transformed to principle components that were used as input to a Random Forest regression model to formulate the relationship between gait parameters and fatigue.

RESULTS

Six principal components were used as input to our model explaining more than 90% of variance within our dataset. Random Forest regression was used to predict fatigue. The model was validated using 10-fold cross validation and the mean absolute error was 1.38 points. Principal components consisting mainly of stride time, maximum toe clearance, heel strike angle, and stride length had large contributions (67%) to the predictions made by the Random Forest.

CONCLUSIONS

The level of fatigue can be predicted based on spatio-temporal gait parameters obtained from an IMU based system. The results can help therapists to monitor fatigue before and after treatment and in rehabilitation programs to evaluate their efficacy. Furthermore, this can be used in home monitoring scenarios where therapists can monitor fatigue using IMUs reducing time and effort of patients and therapists.

摘要

背景

多发性硬化症(MS)是一种致残性疾病,影响中枢神经系统,进而影响全身功能系统,导致不同的步态障碍。疲劳是 MS 最常见的症状,患病率为 80%。先前的研究使用静止步态分析系统和短步态测试(例如 25 英尺计时行走)研究了疲劳与步态障碍之间的关系。然而,尚未使用可穿戴惯性传感器从更长和连续的步态中获取步态数据来评估 MS 中疲劳与步态参数之间的关系。因此,本研究旨在评估从可穿戴足部传感器提取的疲劳与时空步态参数之间的关联,并预测疲劳程度。

方法

纳入 49 名 MS 患者(32 名女性;17 名男性;年龄 41.6 岁,EDSS 1.0-6.5),每位参与者的每只脚都配备一个小型惯性测量单元(IMU)。从 6 分钟步行测试中获取时空步态参数,并使用 Borg 感知用力量表表示疲劳。通过取测试开始和结束时平均步态参数之间的差异来归一化步态参数,以消除个体间差异。之后,将归一化参数转换为主成分,将其用作随机森林回归模型的输入,以建立步态参数与疲劳之间的关系。

结果

使用六个主成分作为输入,我们的模型解释了数据集内超过 90%的方差。随机森林回归用于预测疲劳。该模型使用 10 折交叉验证进行验证,平均绝对误差为 1.38 分。主要由步幅时间、最大脚趾间隙、足跟触地角度和步长组成的主成分对随机森林的预测有很大贡献(67%)。

结论

可以根据基于 IMU 的系统获得的时空步态参数预测疲劳程度。这些结果可以帮助治疗师在治疗前后和康复计划中监测疲劳,评估其疗效。此外,这可以用于家庭监测场景,治疗师可以使用 IMU 监测疲劳,从而减少患者和治疗师的时间和精力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/761f/7749504/ee0947d9f8d6/12984_2020_798_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验