Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
Sci Rep. 2020 Dec 18;10(1):22303. doi: 10.1038/s41598-020-79033-3.
The increasing body of literature describing the role of host factors in COVID-19 pathogenesis demonstrates the need to combine diverse, multi-omic data to evaluate and substantiate the most robust evidence and inform development of therapies. Here we present a dynamic ranking of host genes implicated in human betacoronavirus infection (SARS-CoV-2, SARS-CoV, MERS-CoV, seasonal coronaviruses). We conducted an extensive systematic review of experiments identifying potential host factors. Gene lists from diverse sources were integrated using Meta-Analysis by Information Content (MAIC). This previously described algorithm uses data-driven gene list weightings to produce a comprehensive ranked list of implicated host genes. From 32 datasets, the top ranked gene was PPIA, encoding cyclophilin A, a druggable target using cyclosporine. Other highly-ranked genes included proposed prognostic factors (CXCL10, CD4, CD3E) and investigational therapeutic targets (IL1A) for COVID-19. Gene rankings also inform the interpretation of COVID-19 GWAS results, implicating FYCO1 over other nearby genes in a disease-associated locus on chromosome 3. Researchers can search and review the gene rankings and the contribution of different experimental methods to gene rank at https://baillielab.net/maic/covid19 . As new data are published we will regularly update the list of genes as a resource to inform and prioritise future studies.
越来越多的文献描述了宿主因素在 COVID-19 发病机制中的作用,这表明需要结合多种组学数据来评估和证实最可靠的证据,并为治疗方法的开发提供信息。在这里,我们呈现了一个与人类β冠状病毒感染(SARS-CoV-2、SARS-CoV、MERS-CoV、季节性冠状病毒)相关的宿主基因的动态排名。我们对鉴定潜在宿主因素的实验进行了广泛的系统综述。使用信息内容的荟萃分析(MAIC)整合了来自不同来源的基因列表。这个之前描述的算法使用数据驱动的基因列表权重来生成一个全面的宿主基因综合排名列表。从 32 个数据集,排名最高的基因是 PPIA,它编码亲环素 A,一种使用环孢菌素的可成药靶标。其他排名较高的基因包括 COVID-19 的预后因素(CXCL10、CD4、CD3E)和研究性治疗靶标(IL1A)。基因排名还为 COVID-19 的 GWAS 结果提供了信息,表明 FYCO1 在染色体 3 上与疾病相关的基因座中比其他附近基因更能说明问题。研究人员可以在 https://baillielab.net/maic/covid19 上搜索和查看基因排名以及不同实验方法对基因排名的贡献。随着新数据的发布,我们将定期更新基因列表,作为为未来研究提供信息和确定优先级的资源。