Suppr超能文献

基于改进多尺度加权排列熵和优化支持向量机的复杂信号滚动轴承故障诊断方法

Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals.

机构信息

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, PR China.

出版信息

ISA Trans. 2021 Aug;114:470-484. doi: 10.1016/j.isatra.2020.12.054. Epub 2021 Jan 1.

Abstract

The rolling bearing vibration signals are complex, non-linear, and non-stationary, it is difficult to extract the sensitive features and diagnose faults by conventional signal processing methods. This paper focuses on the sensitive features extraction and pattern recognition for rolling bearing fault diagnosis and proposes a novel intelligent fault-diagnosis method based on generalized composite multiscale weighted permutation entropy (GCMWPE), supervised Isomap (S-Iso), and marine predators algorithm-based support vector machine (MPA-SVM). Firstly, a novel non-linear technology named GCMWPE was presented, allowing the extraction of bearing features from multiple scales and enabling the construction of a high-dimensional feature set. The GCMWPE uses the generalized composite coarse-grained structure to overcome the shortcomings of the original structure in multiscale weighted permutation entropy and obtain more stable entropy values. Subsequently, the S-Iso algorithm was introduced to obtain the main features and reduce the GCMWPE set dimensionality. Finally, a combination of GCMWPE and S-Iso set was input to the MPA-SVM for diagnosis and identification. The marine predators algorithm (MPA) was used to obtain the optimal SVM parameters. The effectiveness of the proposed fault diagnosis method was confirmed through two bearing fault diagnosis experiments. The results have shown that the proposed method can be used to correctly diagnose bearing states with high diagnostic accuracy.

摘要

滚动轴承振动信号复杂、非线性、非平稳,传统信号处理方法难以提取敏感特征和诊断故障。本文针对滚动轴承故障诊断中的敏感特征提取和模式识别问题,提出了一种基于广义复合多尺度加权排列熵(GCMWPE)、监督等距映射(S-Iso)和基于海洋捕食者算法的支持向量机(MPA-SVM)的智能故障诊断新方法。首先,提出了一种新的非线性技术,即广义复合多尺度加权排列熵(GCMWPE),可以从多个尺度提取轴承特征,并构建高维特征集。GCMWPE 使用广义复合粗粒度结构克服了原始结构在多尺度加权排列熵中的缺点,得到了更稳定的熵值。然后,引入了监督等距映射(S-Iso)算法来获取主要特征并降低 GCMWPE 集的维数。最后,将 GCMWPE 和 S-Iso 集的组合输入到基于海洋捕食者算法的支持向量机(MPA-SVM)中进行诊断和识别。使用海洋捕食者算法(MPA)获得最优的 SVM 参数。通过两个轴承故障诊断实验验证了所提出的故障诊断方法的有效性。结果表明,该方法可以正确诊断轴承状态,具有较高的诊断准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验