Suppr超能文献

髓母细胞瘤患者个体预后预测列线图和风险分组系统的外部验证

External Validation of a Nomogram and Risk Grouping System for Predicting Individual Prognosis of Patients With Medulloblastoma.

作者信息

Guo Chengcheng, Yao Dunchen, Lin Xiaoping, Huang He, Zhang Ji, Lin Fuhua, Mou Yonggao, Yang Qunying

机构信息

Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China.

Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China.

出版信息

Front Pharmacol. 2020 Nov 11;11:590348. doi: 10.3389/fphar.2020.590348. eCollection 2020.

Abstract

Medulloblastoma (MB) is one of the most malignant neuroepithelial tumors in the central nervous system. This study aimed to establish an effective prognostic nomogram and risk grouping system for predicting overall survival (OS) of patients with MB. The nomogram was constructed based on data from the database of Surveillance, Epidemiology, and End Results (SEER). This database consisted of 2,824 patients with medulloblastoma and was used as the training cohort. The data of another additional 161 patients treated at the Sun Yat-sen University Cancer Center (SYSUCC) were used as the external validation cohort. Cox regression analysis was used to select independent prognostic factors. Concordance index (C-index) and calibration curve were used to predict the prognostic effect of the nomogram for overall survival. In the training cohort, Cox regression analyses showed that the prognostic factors included histopathology, surgery, radiotherapy, chemotherapy, tumor size, dissemination, and age at diagnosis. The internal and external validated C-indexes were 0.681 and 0.644, respectively. Calibration curves showed that the nomogram was able to predict 1-, 3-, and 5-year OS for patients with MB precisely. Using the training cohort, a risk grouping system was built, which could perfectly classify patients into four risk nomogroups with a 5-year survival rate of 83.9%, 76.5%, 64.5%, and 46.8%, respectively. We built and validated a nomogram and risk grouping system that can provide individual prediction of OS and distinguish MB patients from different risk groups. This nomogram and risk grouping system could help clinicians making better treatment plan and prognostic assessment.

摘要

髓母细胞瘤(MB)是中枢神经系统中最恶性的神经上皮肿瘤之一。本研究旨在建立一种有效的预后列线图和风险分组系统,以预测MB患者的总生存期(OS)。该列线图基于监测、流行病学和最终结果(SEER)数据库的数据构建。该数据库包含2824例髓母细胞瘤患者,并用作训练队列。另外161例在中山大学肿瘤防治中心(SYSUCC)接受治疗的患者的数据用作外部验证队列。采用Cox回归分析选择独立预后因素。一致性指数(C-index)和校准曲线用于预测列线图对总生存期的预后效果。在训练队列中,Cox回归分析显示预后因素包括组织病理学、手术、放疗、化疗、肿瘤大小、播散和诊断时年龄。内部和外部验证的C-index分别为0.681和0.644。校准曲线显示,该列线图能够准确预测MB患者的1年、3年和5年总生存期。利用训练队列,建立了一个风险分组系统,该系统可以将患者完美地分为四个风险列线图组,5年生存率分别为83.9%、76.5%、64.5%和46.8%。我们构建并验证了一个列线图和风险分组系统,该系统可以提供总生存期的个体预测,并区分不同风险组的MB患者。该列线图和风险分组系统可以帮助临床医生制定更好的治疗方案和预后评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e24d/7748109/b1558480e575/fphar-11-590348-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验