Suppr超能文献

吸气肌训练方法的训练特异性:一项随机试验。

Training Specificity of Inspiratory Muscle Training Methods: A Randomized Trial.

作者信息

Van Hollebeke Marine, Gosselink Rik, Langer Daniel

机构信息

KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium.

出版信息

Front Physiol. 2020 Dec 3;11:576595. doi: 10.3389/fphys.2020.576595. eCollection 2020.

Abstract

INTRODUCTION

Inspiratory muscle training (IMT) protocols are typically performed using pressure threshold loading with inspirations initiated from residual volume (RV). We aimed to compare effects of three different IMT protocols on maximal inspiratory pressures (PImax) and maximal inspiratory flow (V̇Imax) at three different lung volumes. We hypothesized that threshold loading performed from functional residual capacity (FRC) or tapered flow resistive loading (initiated from RV) would improve inspiratory muscle function over a larger range of lung volumes in comparison with the standard protocol.

METHODS

48 healthy volunteers (42% male, age: 48 ± 9 years, PImax: 110 ± 28%pred, [mean ± SD]) were randomly assigned to perform three daily IMT sessions of pressure threshold loading (either initiated from RV or from FRC) or tapered flow resistive loading (initiated from RV) for 4 weeks. Sessions consisted of 30 breaths against the highest tolerable load. Before and after the training period, PImax was measured at RV, FRC, and midway between FRC and total lung capacity (1/2 IC). V̇Imax was measured at the same lung volumes against a range of external threshold loads.

RESULTS

While PImax increased significantly at RV and at FRC in the group performing the standard training protocol (pressure threshold loading from RV), it increased significantly at all lung volumes in the two other training groups (all < 0.05). No significant changes in V̇Imax were observed in the group performing the standard protocol. Increases of V̇Imax were significantly larger at all lung volumes after tapered flow resistive loading, and at higher lung volumes (i.e., FRC and 1/2 IC) after pressure threshold loading from FRC in comparison with the standard protocol (all < 0.05).

CONCLUSION

Only training with tapered flow resistive loading and pressure threshold loading from functional residual capacity resulted in consistent improvements in respiratory muscle function at higher lung volumes, whereas improvements after the standard protocol (pressure threshold loading from residual volume) were restricted to gains in PImax at lower lung volumes. Further research is warranted to investigate whether these results can be confirmed in larger samples of both healthy subjects and patients.

摘要

引言

吸气肌训练(IMT)方案通常采用压力阈值负荷,吸气从残气量(RV)开始。我们旨在比较三种不同的IMT方案对三个不同肺容量下的最大吸气压(PImax)和最大吸气流量(V̇Imax)的影响。我们假设,与标准方案相比,从功能残气量(FRC)进行的阈值负荷或渐减流量阻力负荷(从RV开始)在更大范围的肺容量上能改善吸气肌功能。

方法

48名健康志愿者(42%为男性,年龄:48±9岁,PImax:110±28%预测值,[均值±标准差])被随机分配,每天进行三次压力阈值负荷(从RV或FRC开始)或渐减流量阻力负荷(从RV开始)的IMT训练,持续4周。每次训练包括对抗最高可耐受负荷进行30次呼吸。在训练期前后,在RV、FRC以及FRC与肺总量中点(1/2 IC)处测量PImax。在相同肺容量下,对抗一系列外部阈值负荷测量V̇Imax。

结果

在进行标准训练方案(从RV进行压力阈值负荷)的组中,PImax在RV和FRC处显著增加,而在其他两个训练组中,PImax在所有肺容量处均显著增加(均P<0.05)。在进行标准方案的组中,未观察到V̇Imax有显著变化。与标准方案相比,渐减流量阻力负荷后,所有肺容量下V̇Imax的增加均显著更大;从FRC进行压力阈值负荷后,在较高肺容量(即FRC和1/2 IC)下V̇Imax的增加也显著更大(均P<0.05)。

结论

只有采用渐减流量阻力负荷和从功能残气量进行压力阈值负荷的训练,才能在较高肺容量下持续改善呼吸肌功能,而标准方案(从残气量进行压力阈值负荷)后的改善仅限于较低肺容量下PImax的增加。有必要进行进一步研究,以调查这些结果能否在更大样本的健康受试者和患者中得到证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4208/7744620/95506fbcfa9d/fphys-11-576595-g001.jpg

相似文献

1
Training Specificity of Inspiratory Muscle Training Methods: A Randomized Trial.
Front Physiol. 2020 Dec 3;11:576595. doi: 10.3389/fphys.2020.576595. eCollection 2020.
2
Comparing two types of loading during inspiratory muscle training in patients with weaning difficulties: An exploratory study.
Aust Crit Care. 2023 Jul;36(4):622-627. doi: 10.1016/j.aucc.2022.07.001. Epub 2022 Aug 27.
3
Efficacy of a Novel Method for Inspiratory Muscle Training in People With Chronic Obstructive Pulmonary Disease.
Phys Ther. 2015 Sep;95(9):1264-73. doi: 10.2522/ptj.20140245. Epub 2015 Apr 9.
6
Comparison of two inspiratory muscle training protocols in people with spinal cord injury: a secondary analysis.
Spinal Cord Ser Cases. 2023 Aug 12;9(1):42. doi: 10.1038/s41394-023-00594-2.
7
Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD.
J Appl Physiol (1985). 2018 Aug 1;125(2):381-392. doi: 10.1152/japplphysiol.01078.2017. Epub 2018 Mar 15.
9
Inspiratory muscle training in patients with cystic fibrosis.
Respir Med. 2001 Jan;95(1):31-6. doi: 10.1053/rmed.2000.0966.
10
Effects of swim training on lung volumes and inspiratory muscle conditioning.
J Appl Physiol (1985). 1987 Jan;62(1):39-46. doi: 10.1152/jappl.1987.62.1.39.

引用本文的文献

1
Application of respiratory muscle training for improved intermittent exercise performance in team sports: a narrative review.
Front Sports Act Living. 2025 Jul 15;7:1632207. doi: 10.3389/fspor.2025.1632207. eCollection 2025.
2
Respiratory muscle dysfunction in acute and chronic respiratory failure: how to diagnose and how to treat?
Eur Respir Rev. 2024 Dec 4;33(174). doi: 10.1183/16000617.0150-2024. Print 2024 Oct.
3
Future Directions for Respiratory Muscle Training in Neuromuscular Disorders: A Scoping Review.
Respiration. 2024;103(10):601-621. doi: 10.1159/000539726. Epub 2024 Jun 10.
4
Managing respiratory muscle weakness during weaning from invasive ventilation.
Eur Respir Rev. 2023 Apr 5;32(168). doi: 10.1183/16000617.0205-2022. Print 2023 Jun 30.
6
Time to Move Beyond a "One-Size Fits All" Approach to Inspiratory Muscle Training.
Front Physiol. 2022 Jan 10;12:766346. doi: 10.3389/fphys.2021.766346. eCollection 2021.

本文引用的文献

1
Dyspnea in COPD: New Mechanistic Insights and Management Implications.
Adv Ther. 2020 Jan;37(1):41-60. doi: 10.1007/s12325-019-01128-9. Epub 2019 Oct 30.
2
ERS statement on respiratory muscle testing at rest and during exercise.
Eur Respir J. 2019 Jun 13;53(6). doi: 10.1183/13993003.01214-2018. Print 2019 Jun.
3
Adherence to COPD treatment: Myth and reality.
Respir Med. 2017 Aug;129:117-123. doi: 10.1016/j.rmed.2017.06.007. Epub 2017 Jun 13.
4
Efficacy of a Novel Method for Inspiratory Muscle Training in People With Chronic Obstructive Pulmonary Disease.
Phys Ther. 2015 Sep;95(9):1264-73. doi: 10.2522/ptj.20140245. Epub 2015 Apr 9.
5
How to do random allocation (randomization).
Clin Orthop Surg. 2014 Mar;6(1):103-9. doi: 10.4055/cios.2014.6.1.103. Epub 2014 Feb 14.
6
Mechanical properties of respiratory muscles.
Compr Physiol. 2013 Oct;3(4):1553-67. doi: 10.1002/cphy.c130003.
7
Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses.
J Strength Cond Res. 2013 Jun;27(6):1643-63. doi: 10.1519/JSC.0b013e318269f73f.
9
Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations.
Eur Respir J. 2012 Dec;40(6):1324-43. doi: 10.1183/09031936.00080312. Epub 2012 Jun 27.
10
Respiratory physiology: adaptations to high-level exercise.
Br J Sports Med. 2012 May;46(6):381-4. doi: 10.1136/bjsports-2011-090824. Epub 2012 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验