文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于增强淋巴结转运和副皮质渗透的可生物降解纳米颗粒的临界尺寸限制

Critical Size Limit of Biodegradable Nanoparticles for Enhanced Lymph Node Trafficking and Paracortex Penetration.

作者信息

Howard Gregory P, Verma Garima, Ke Xiyu, Thayer Winter M, Hamerly Timothy, Baxter Victoria K, Lee John E, Dinglasan Rhoel R, Mao Hai-Quan

机构信息

Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, USA.

Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, USA.

出版信息

Nano Res. 2019 Apr;12(4):837-844. doi: 10.1007/s12274-019-2301-3. Epub 2019 Jan 29.


DOI:10.1007/s12274-019-2301-3
PMID:33343832
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7747954/
Abstract

Lymph node (LN) targeting through interstitial drainage of nanoparticles (NPs) is an attractive strategy to stimulate a potent immune response, as LNs are the primary site for lymphocyte priming by antigen presenting cells (APCs) and triggering of an adaptive immune response. NP size has been shown to influence the efficiency of LN-targeting and retention after subcutaneous injection. For clinical translation, biodegradable NPs are preferred as carrier for vaccine delivery. However, the selective "size gate" for effective LN-drainage, particularly the kinetics of LN trafficking, is less well defined. This is partly due to the challenge in generating size-controlled NPs from biodegradable polymers in the sub-100-nm range. Here, we report the preparation of three sets of poly(lactic-co-glycolic)--poly(ethylene-glycol) (PLGA--PEG) NPs with number average diameters of 20-, 40-, and 100-nm and narrow size distributions using flash nanoprecipitation. Using NPs labeled with a near-infrared dye, we showed that 20-nm NPs drain rapidly across proximal and distal LNs following subcutaneous inoculation in mice and are retained in LNs more effectively than NPs with a number average diameter of 40-nm. The drainage of 100-nm NPs was negligible. Furthermore, the 20-nm NPs showed the highest degree of penetration around the paracortex region and had enhanced access to dendritic cells in the LNs. Together, these data confirmed that small, size-controlled PLGA--PEG NPs at the lower threshold of about 30-nm are most effective for LN trafficking, retention, and APC uptake after administration. This report could inform the design of LN-targeted NP carrier for the delivery of therapeutic or prophylactic vaccines.

摘要

通过纳米颗粒(NPs)的间质引流实现淋巴结(LN)靶向是一种激发有效免疫反应的有吸引力的策略,因为淋巴结是抗原呈递细胞(APC)启动淋巴细胞并触发适应性免疫反应的主要部位。研究表明,纳米颗粒的大小会影响皮下注射后淋巴结靶向和滞留的效率。对于临床转化,可生物降解的纳米颗粒是疫苗递送的首选载体。然而,有效淋巴结引流的选择性“尺寸门”,特别是淋巴结转运的动力学,尚不太明确。部分原因是在制备100纳米以下范围内由可生物降解聚合物制成的尺寸可控纳米颗粒时面临挑战。在此,我们报告了使用快速纳米沉淀法制备的三组聚(乳酸-共-乙醇酸)-聚(乙二醇)(PLGA-PEG)纳米颗粒,其数均直径分别为20纳米、40纳米和100纳米,且尺寸分布狭窄。使用近红外染料标记的纳米颗粒,我们发现20纳米的纳米颗粒在小鼠皮下接种后能迅速引流至近端和远端淋巴结,并且比数均直径为40纳米的纳米颗粒更有效地滞留在淋巴结中。100纳米纳米颗粒的引流可忽略不计。此外,20纳米的纳米颗粒在副皮质区周围显示出最高程度的渗透,并能更好地接触淋巴结中的树突状细胞。总之,这些数据证实,约30纳米下限的小尺寸、可控的PLGA-PEG纳米颗粒在给药后对淋巴结转运、滞留和抗原呈递细胞摄取最为有效。本报告可为治疗性或预防性疫苗递送的淋巴结靶向纳米颗粒载体设计提供参考。

相似文献

[1]
Critical Size Limit of Biodegradable Nanoparticles for Enhanced Lymph Node Trafficking and Paracortex Penetration.

Nano Res. 2019-4

[2]
Biodegradable PLGA--PEG Nanoparticles Induce T Helper 2 (Th2) Immune Responses and Sustained Antibody Titers via TLR9 Stimulation.

Vaccines (Basel). 2020-5-29

[3]
Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens.

J Exp Clin Cancer Res. 2016-10-26

[4]
Rapid and Persistent Delivery of Antigen by Lymph Node Targeting PRINT Nanoparticle Vaccine Carrier To Promote Humoral Immunity.

Mol Pharm. 2015-5-4

[5]
Antigen delivery via hydrophilic PEG-b-PAGE-b-PLGA nanoparticles boosts vaccination induced T cell immunity.

Eur J Pharm Biopharm. 2016-5

[6]
Synthetic Polymeric Mixed Micelles Targeting Lymph Nodes Trigger Enhanced Cellular and Humoral Immune Responses.

ACS Appl Mater Interfaces. 2018-1-10

[7]
Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism.

Mol Pharm. 2014-12-1

[8]
Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery.

Int J Pharm. 2017-9-7

[9]
Functional characterization of biodegradable nanoparticles as antigen delivery system.

J Exp Clin Cancer Res. 2015-10-6

[10]
Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells.

Acta Biomater. 2014-5

引用本文的文献

[1]
Adjuvanted RNA Origami-A Tunable Peptide Assembly Platform for Constructing Cancer Nanovaccines.

Vaccines (Basel). 2025-5-25

[2]
Thermosensitive Hydrogel Sustaining the Release of Lymph-Draining Oligonucleotide Adjuvant Polyplex Micelles Improves Systemic Cancer Immunotherapy.

ACS Nano. 2025-6-17

[3]
Outer Membrane Vesicles from : A Platform for Recombinant Antigen Presentation.

ACS Nano. 2025-6-10

[4]
A nanoparticle platform for the co-delivery of multiple antigen epitope peptides and STING agonist to lymph nodes for cancer immunotherapy.

Int J Pharm. 2025-7-25

[5]
Synthetic organic materials for targeting immunotherapies to lymph nodes.

Chem Mater. 2024-10-8

[6]
Viral Infection and Dissemination Through the Lymphatic System.

Microorganisms. 2025-2-18

[7]
Enhanced Immunogenicity of Foot-and-Mouth Disease Virus-like Particles Using a Water-in-Oil-in-Water Adjuvant.

Vaccines (Basel). 2024-12-30

[8]
Engineering dendritic cell biomimetic membrane as a delivery system for tumor targeted therapy.

J Nanobiotechnology. 2024-10-27

[9]
Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications.

Biomater Res. 2024-9-25

[10]
Therapeutic applications of RNA nanostructures.

RSC Adv. 2024-9-11

本文引用的文献

[1]
Maturation of dendritic cells in vitro and immunological enhancement of mice in vivo by pachyman- and/or OVA-encapsulated poly(d,l-lactic acid) nanospheres.

Int J Nanomedicine. 2018-1-26

[2]
Lymph node targeting strategies to improve vaccination efficacy.

J Control Release. 2017-8-15

[3]
Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses.

J Control Release. 2017-4-18

[4]
Reprogramming the Local Lymph Node Microenvironment Promotes Tolerance that Is Systemic and Antigen Specific.

Cell Rep. 2016-9-13

[5]
From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity.

Nat Rev Drug Discov. 2015-10-16

[6]
Shape and size-dependent immune response to antigen-carrying nanoparticles.

J Control Release. 2015-10-3

[7]
Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery.

Curr Opin Chem Eng. 2015-2-1

[8]
Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance.

Proc Natl Acad Sci U S A. 2015-1-13

[9]
Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes.

Sci Rep. 2014-8-12

[10]
Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation.

Biomaterials. 2014-4-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索