Howard Gregory P, Verma Garima, Ke Xiyu, Thayer Winter M, Hamerly Timothy, Baxter Victoria K, Lee John E, Dinglasan Rhoel R, Mao Hai-Quan
Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, USA.
Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, USA.
Nano Res. 2019 Apr;12(4):837-844. doi: 10.1007/s12274-019-2301-3. Epub 2019 Jan 29.
Lymph node (LN) targeting through interstitial drainage of nanoparticles (NPs) is an attractive strategy to stimulate a potent immune response, as LNs are the primary site for lymphocyte priming by antigen presenting cells (APCs) and triggering of an adaptive immune response. NP size has been shown to influence the efficiency of LN-targeting and retention after subcutaneous injection. For clinical translation, biodegradable NPs are preferred as carrier for vaccine delivery. However, the selective "size gate" for effective LN-drainage, particularly the kinetics of LN trafficking, is less well defined. This is partly due to the challenge in generating size-controlled NPs from biodegradable polymers in the sub-100-nm range. Here, we report the preparation of three sets of poly(lactic-co-glycolic)--poly(ethylene-glycol) (PLGA--PEG) NPs with number average diameters of 20-, 40-, and 100-nm and narrow size distributions using flash nanoprecipitation. Using NPs labeled with a near-infrared dye, we showed that 20-nm NPs drain rapidly across proximal and distal LNs following subcutaneous inoculation in mice and are retained in LNs more effectively than NPs with a number average diameter of 40-nm. The drainage of 100-nm NPs was negligible. Furthermore, the 20-nm NPs showed the highest degree of penetration around the paracortex region and had enhanced access to dendritic cells in the LNs. Together, these data confirmed that small, size-controlled PLGA--PEG NPs at the lower threshold of about 30-nm are most effective for LN trafficking, retention, and APC uptake after administration. This report could inform the design of LN-targeted NP carrier for the delivery of therapeutic or prophylactic vaccines.
通过纳米颗粒(NPs)的间质引流实现淋巴结(LN)靶向是一种激发有效免疫反应的有吸引力的策略,因为淋巴结是抗原呈递细胞(APC)启动淋巴细胞并触发适应性免疫反应的主要部位。研究表明,纳米颗粒的大小会影响皮下注射后淋巴结靶向和滞留的效率。对于临床转化,可生物降解的纳米颗粒是疫苗递送的首选载体。然而,有效淋巴结引流的选择性“尺寸门”,特别是淋巴结转运的动力学,尚不太明确。部分原因是在制备100纳米以下范围内由可生物降解聚合物制成的尺寸可控纳米颗粒时面临挑战。在此,我们报告了使用快速纳米沉淀法制备的三组聚(乳酸-共-乙醇酸)-聚(乙二醇)(PLGA-PEG)纳米颗粒,其数均直径分别为20纳米、40纳米和100纳米,且尺寸分布狭窄。使用近红外染料标记的纳米颗粒,我们发现20纳米的纳米颗粒在小鼠皮下接种后能迅速引流至近端和远端淋巴结,并且比数均直径为40纳米的纳米颗粒更有效地滞留在淋巴结中。100纳米纳米颗粒的引流可忽略不计。此外,20纳米的纳米颗粒在副皮质区周围显示出最高程度的渗透,并能更好地接触淋巴结中的树突状细胞。总之,这些数据证实,约30纳米下限的小尺寸、可控的PLGA-PEG纳米颗粒在给药后对淋巴结转运、滞留和抗原呈递细胞摄取最为有效。本报告可为治疗性或预防性疫苗递送的淋巴结靶向纳米颗粒载体设计提供参考。
Eur J Pharm Biopharm. 2016-5
ACS Appl Mater Interfaces. 2018-1-10
J Exp Clin Cancer Res. 2015-10-6
Vaccines (Basel). 2025-5-25
Chem Mater. 2024-10-8
Microorganisms. 2025-2-18
Vaccines (Basel). 2024-12-30
J Nanobiotechnology. 2024-10-27
Biomater Res. 2024-9-25
RSC Adv. 2024-9-11
J Control Release. 2017-8-15
J Control Release. 2017-4-18
Nat Rev Drug Discov. 2015-10-16
J Control Release. 2015-10-3
Curr Opin Chem Eng. 2015-2-1
Proc Natl Acad Sci U S A. 2015-1-13