Suppr超能文献

基于中国焦作地区 DRGs 的基于大数据的脑卒中患者支付分析。

Big Data-Enabled Analysis of DRGs-Based Payment on Stroke Patients in Jiaozuo, China.

机构信息

School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China.

Computer Science Department, Abdul Wali Khan University Mardan, Mardan, KPK, Pakistan.

出版信息

J Healthc Eng. 2020 Dec 2;2020:6690019. doi: 10.1155/2020/6690019. eCollection 2020.

Abstract

Stroke is the first leading cause of mortality in China with annual 2 million deaths. According to the National Health Commission of the People's Republic of China, the annual in-hospital costs for the stroke patients in China reach ¥20.71 billion. Moreover, multivariate stepwise linear regression is a prevalent big data analysis tool employing the statistical significance to determine the explanatory variables. In light of this fact, this paper aims to analyze the pertinent influence factors of diagnosis related groups- (DRGs-) based stroke patients on the in-hospital costs in Jiaozuo city of Henan province, China, to provide the theoretical guidance for medical payment and medical resource allocation in Jiaozuo city of Henan province, China. All medical data records of 3,590 stroke patients were from the First Affiliated Hospital of Henan Polytechnic University between 1 January 2019 and 31 December 2019, which is a Class A tertiary comprehensive hospital in Jiaozuo city. By using the classical statistical and multivariate linear regression analysis of big data related algorithms, this study is conducted to investigate the influence factors of the stroke patients on in-hospital costs, such as age, gender, length of stay (LoS), and outcomes. The essential findings of this paper are shown as follows: (1) age, LoS, and outcomes have significant effects on the in-hospital costs of stroke patients; (2) gender is not a statistically significant influence factor on the in-hospital costs of the stroke patients; (3) DRGs classification of the stroke patients manifests not only a reduced mean LoS but also a peculiar shape of the distribution of LoS.

摘要

脑卒中是中国首要的致死病因,每年导致 200 万人死亡。根据中国国家卫生健康委员会的数据,中国脑卒中患者的年住院费用达到 207.1 亿元。此外,多元逐步线性回归是一种常用的大数据分析工具,采用统计学意义来确定解释变量。鉴于此,本文旨在分析中国河南省焦作市基于诊断相关分组(DRGs)的脑卒中患者住院费用的相关影响因素,为中国河南省焦作市的医疗支付和医疗资源配置提供理论指导。所有 3590 例脑卒中患者的医疗数据记录均来自河南理工大学第一附属医院 2019 年 1 月 1 日至 12 月 31 日期间的住院患者,这是焦作市的一家 A 级三级综合医院。本研究采用经典统计学和大数据相关算法的多元线性回归分析,调查年龄、性别、住院时间(LoS)和结局等因素对脑卒中患者住院费用的影响。本文的主要研究结果如下:(1)年龄、LoS 和结局对脑卒中患者的住院费用有显著影响;(2)性别不是脑卒中患者住院费用的统计学显著影响因素;(3)脑卒中患者的 DRGs 分类不仅表现出平均 LoS 的减少,而且还表现出 LoS 分布的独特形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d524/7728475/bafba48e0058/JHE2020-6690019.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验