Puller Vadim, Sagulenko Pavel, Neher Richard A
Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 61, Basel, Switzerland.
Virus Evol. 2020 Aug 20;6(2):veaa066. doi: 10.1093/ve/veaa066. eCollection 2020 Jul.
Natural selection imposes a complex filter on which variants persist in a population resulting in evolutionary patterns that vary greatly along the genome. Some sites evolve close to neutrally, while others are highly conserved, allow only specific states, or only change in concert with other sites. On one hand, such constraints on sequence evolution can be to infer biological function, one the other hand they need to be accounted for in phylogenetic reconstruction. Phylogenetic models often account for this complexity by partitioning sites into a small number of discrete classes with different rates and/or state preferences. Appropriate model complexity is typically determined by model selection procedures. Here, we present an efficient algorithm to estimate more complex models that allow for different preferences at every site and explore the accuracy at which such models can be estimated from simulated data. Our iterative approximate maximum likelihood scheme uses information in the data efficiently and accurately estimates site-specific preferences from large data sets with moderately diverged sequences and known topology. However, the joint estimation of site-specific rates, and site-specific preferences, and phylogenetic branch length can suffer from identifiability problems, while ignoring variation in preferences across sites results in branch length underestimates. Site-specific preferences estimated from large HIV alignments show qualitative concordance with intra-host estimates of fitness costs. Analysis of these substitution models suggests near saturation of divergence after a few hundred years. Such saturation can explain the inability to infer deep divergence times of HIV and SIVs using molecular clock approaches and time-dependent rate estimates.
自然选择对种群中持续存在的变异施加了一个复杂的筛选过程,导致沿基因组的进化模式差异极大。一些位点进化接近中性,而其他位点则高度保守,只允许特定状态,或仅与其他位点协同变化。一方面,对序列进化的这种限制可用于推断生物学功能,另一方面,在系统发育重建中需要考虑这些限制。系统发育模型通常通过将位点划分为少量具有不同速率和/或状态偏好的离散类别来解释这种复杂性。适当的模型复杂性通常由模型选择程序确定。在这里,我们提出了一种有效的算法来估计更复杂的模型,该模型允许每个位点有不同的偏好,并探索从模拟数据中估计此类模型的准确性。我们的迭代近似最大似然方案有效地利用了数据中的信息,并从具有适度分歧序列和已知拓扑结构的大数据集中准确估计位点特异性偏好。然而,位点特异性速率、位点特异性偏好和系统发育分支长度的联合估计可能会遇到可识别性问题,而忽略位点间偏好的变化会导致分支长度被低估。从大型HIV比对中估计的位点特异性偏好与宿主内适应性成本估计在质量上一致。对这些替代模型的分析表明,几百年后分歧接近饱和。这种饱和可以解释为什么无法使用分子钟方法和时间依赖速率估计来推断HIV和SIV的深度分歧时间。