Suppr超能文献

心脏磁共振影像组学的可重复性:一项多中心多设备重测研究

Repeatability of Cardiac Magnetic Resonance Radiomics: A Multi-Centre Multi-Vendor Test-Retest Study.

作者信息

Raisi-Estabragh Zahra, Gkontra Polyxeni, Jaggi Akshay, Cooper Jackie, Augusto João, Bhuva Anish N, Davies Rhodri H, Manisty Charlotte H, Moon James C, Munroe Patricia B, Harvey Nicholas C, Lekadir Karim, Petersen Steffen E

机构信息

NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.

Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.

出版信息

Front Cardiovasc Med. 2020 Dec 2;7:586236. doi: 10.3389/fcvm.2020.586236. eCollection 2020.

Abstract

To evaluate the repeatability of cardiac magnetic resonance (CMR) radiomics features on test-retest scanning using a multi-centre multi-vendor dataset with a varied case-mix. The sample included 54 test-retest studies from the VOLUMES resource (thevolumesresource.com). Images were segmented according to a pre-defined protocol to select three regions of interest (ROI) in end-diastole and end-systole: right ventricle, left ventricle (LV), and LV myocardium. We extracted radiomics shape features from all three ROIs and, additionally, first-order and texture features from the LV myocardium. Overall, 280 features were derived per study. For each feature, we calculated intra-class correlation coefficient (ICC), within-subject coefficient of variation, and mean relative difference. We ranked robustness of features according to mean ICC stratified by feature category, ROI, and cardiac phase, demonstrating a wide range of repeatability. There were features with good and excellent repeatability (ICC ≥ 0.75) within all feature categories and ROIs. A high proportion of first-order and texture features had excellent repeatability (ICC ≥ 0.90), however, these categories also contained features with the poorest repeatability (ICC < 0.50). CMR radiomic features have a wide range of repeatability. This paper is intended as a reference for future researchers to guide selection of the most robust features for clinical CMR radiomics models. Further work in larger and richer datasets is needed to further define the technical performance and clinical utility of CMR radiomics.

摘要

使用包含多种病例组合的多中心多厂商数据集,评估心脏磁共振(CMR)影像组学特征在重测扫描中的可重复性。样本包括来自VOLUMES资源(thevolumesresource.com)的54项重测研究。根据预定义方案对图像进行分割,以在舒张末期和收缩末期选择三个感兴趣区域(ROI):右心室、左心室(LV)和LV心肌。我们从所有三个ROI中提取了影像组学形状特征,此外,还从LV心肌中提取了一阶和纹理特征。每项研究总共提取了280个特征。对于每个特征,我们计算了组内相关系数(ICC)、受试者内变异系数和平均相对差异。我们根据按特征类别、ROI和心脏相位分层的平均ICC对特征的稳健性进行排名,结果显示可重复性范围广泛。在所有特征类别和ROI中都存在具有良好和优异可重复性(ICC≥0.75)的特征。高比例的一阶和纹理特征具有优异的可重复性(ICC≥0.90),然而,这些类别中也包含可重复性最差的特征(ICC<0.50)。CMR影像组学特征具有广泛的可重复性。本文旨在为未来的研究人员提供参考,以指导临床CMR影像组学模型中最稳健特征的选择。需要在更大、更丰富的数据集中开展进一步工作,以进一步明确CMR影像组学的技术性能和临床效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c204/7738466/105b18f3d82e/fcvm-07-586236-g0009.jpg

相似文献

1
Repeatability of Cardiac Magnetic Resonance Radiomics: A Multi-Centre Multi-Vendor Test-Retest Study.
Front Cardiovasc Med. 2020 Dec 2;7:586236. doi: 10.3389/fcvm.2020.586236. eCollection 2020.
2
Test-retest repeatability of myocardial radiomic features from quantitative cardiac magnetic resonance T1 and T2 mapping.
Magn Reson Imaging. 2024 Nov;113:110217. doi: 10.1016/j.mri.2024.110217. Epub 2024 Jul 25.
5
Repeatability of radiomic features in myocardial T1 and T2 mapping.
Eur Radiol. 2025 Mar;35(3):1570-1582. doi: 10.1007/s00330-024-11337-8. Epub 2025 Jan 15.
8
Physics-Informed Discretization for Reproducible and Robust Radiomic Feature Extraction Using Quantitative MRI.
Invest Radiol. 2024 May 1;59(5):359-371. doi: 10.1097/RLI.0000000000001026. Epub 2023 Oct 9.
9
Precision of MRI radiomics features in the liver and hepatocellular carcinoma.
Eur Radiol. 2022 Mar;32(3):2030-2040. doi: 10.1007/s00330-021-08282-1. Epub 2021 Sep 26.

引用本文的文献

3
Repeatability of radiomic features in myocardial T1 and T2 mapping.
Eur Radiol. 2025 Mar;35(3):1570-1582. doi: 10.1007/s00330-024-11337-8. Epub 2025 Jan 15.
7
Radiomics-based detection of acute myocardial infarction on noncontrast enhanced midventricular short-axis cine CMR images.
Int J Cardiovasc Imaging. 2024 Jun;40(6):1211-1220. doi: 10.1007/s10554-024-03089-9. Epub 2024 Apr 17.
8
Artificial Intelligence in the Image-Guided Care of Atrial Fibrillation.
Life (Basel). 2023 Sep 5;13(9):1870. doi: 10.3390/life13091870.
9
A robust radiomic-based machine learning approach to detect cardiac amyloidosis using cardiac computed tomography.
Front Radiol. 2023 Jun 16;3:1193046. doi: 10.3389/fradi.2023.1193046. eCollection 2023.
10
Image-Based Biological Heart Age Estimation Reveals Differential Aging Patterns Across Cardiac Chambers.
J Magn Reson Imaging. 2023 Dec;58(6):1797-1812. doi: 10.1002/jmri.28675. Epub 2023 Mar 16.

本文引用的文献

1
Reproducibility of Segmentation-based Myocardial Radiomic Features with Cardiac MRI.
Radiol Cardiothorac Imaging. 2020 Jun 25;2(3):e190216. doi: 10.1148/ryct.2020190216.
2
Cardiac magnetic resonance radiomics: basic principles and clinical perspectives.
Eur Heart J Cardiovasc Imaging. 2020 Apr 1;21(4):349-356. doi: 10.1093/ehjci/jeaa028.
3
A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis.
Circ Cardiovasc Imaging. 2019 Oct;12(10):e009214. doi: 10.1161/CIRCIMAGING.119.009214. Epub 2019 Sep 24.
4
Gray-level discretization impacts reproducible MRI radiomics texture features.
PLoS One. 2019 Mar 7;14(3):e0213459. doi: 10.1371/journal.pone.0213459. eCollection 2019.
5
Assessing robustness of radiomic features by image perturbation.
Sci Rep. 2019 Jan 24;9(1):614. doi: 10.1038/s41598-018-36938-4.
6
Radiomic Analysis of Myocardial Native T Imaging Discriminates Between Hypertensive Heart Disease and Hypertrophic Cardiomyopathy.
JACC Cardiovasc Imaging. 2019 Oct;12(10):1946-1954. doi: 10.1016/j.jcmg.2018.11.024. Epub 2019 Jan 16.
7
Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging: A Phantom Study.
Invest Radiol. 2019 Apr;54(4):221-228. doi: 10.1097/RLI.0000000000000530.
8
Test-Retest Data for Radiomics Feature Stability Analysis: Generalizable or Study-Specific?
Tomography. 2016 Dec;2(4):361-365. doi: 10.18383/j.tom.2016.00208.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验