Suppr超能文献

磁场强度和分割变异性对心血管磁共振参数映射中影像组学纹理特征的可重复性和再现性的影响。

Effect of magnetic field strength and segmentation variability on the reproducibility and repeatability of radiomic texture features in cardiovascular magnetic resonance parametric mapping.

作者信息

Yamlome Pascal, Jordan Jennifer H

机构信息

Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.

Division of Cardiology, Pauley Heart Center at Virginia Commonwealth University, Richmond, VA, USA.

出版信息

Int J Cardiovasc Imaging. 2025 Feb;41(2):325-337. doi: 10.1007/s10554-024-03312-7. Epub 2025 Jan 8.

Abstract

Our study aims to assess the robustness of myocardial radiomic texture features (RTF) to segmentation variability and variations across scanners with different field strengths, addressing concerns about reliability in clinical practices. We conducted a retrospective analysis on 45 pairs of CMR T1 maps from 15 healthy volunteers using 1.5 T and 3 T Siemens scanners. Manual left ventricular myocardium segmentation and a deep learning-based model with Monte Carlo Dropout generated masks with different levels of variability and 1023 RTFs extracted from each region of interest (ROI). Reproducibility: the extent to which RTFs extracted from 1.5 T and 3 T images are consistent, and repeatability: the extent to which RTFs extracted from multiple segmentation runs at the same field strength agree with each other, were measured by the intraclass correlation coefficient (ICC). We categorized ICC values as excellent, good, moderate, and poor. We reported the proportion of RTFs that fell in each category. The proportion of RTFs with excellent repeatability decreased as the proportion of ROI pixels in congruence across segmentation runs decreased. Up to 31% of RTFs showed excellent repeatability, while 35% showed good repeatability across segmentation runs from the manually generated masks. Across scanners (i.e., 1.5 T vs 3 T), only 7% exhibited good reproducibility. While our results demonstrate RTF sensitivity to differences in field strength and segmentation variability, we identified certain preprocessing filters and feature classes that are less sensitive to these variations and, as such, may be good candidates for imaging biomarkers or building machine-learning models.

摘要

我们的研究旨在评估心肌放射组学纹理特征(RTF)对分割变异性以及不同场强扫描仪之间差异的稳健性,以解决临床实践中对可靠性的担忧。我们对15名健康志愿者使用1.5T和3T西门子扫描仪获取的45对CMR T1图谱进行了回顾性分析。通过手动进行左心室心肌分割以及基于深度学习且带有蒙特卡洛随机失活的模型生成具有不同变异性水平的掩码,并从每个感兴趣区域(ROI)提取1023个RTF。再现性:从1.5T和3T图像中提取的RTF的一致程度,以及重复性:在相同场强下从多次分割运行中提取的RTF彼此之间的一致程度,通过组内相关系数(ICC)进行测量。我们将ICC值分为优秀、良好、中等和较差四类。我们报告了落在每一类中的RTF的比例。随着分割运行中一致的ROI像素比例降低,具有优秀重复性的RTF的比例也随之下降。高达31%的RTF显示出优秀的重复性,而从手动生成的掩码进行的分割运行中,有35%显示出良好的重复性。在不同扫描仪之间(即1.5T与3T),只有7%表现出良好的再现性。虽然我们的结果表明RTF对场强差异和分割变异性敏感,但我们确定了某些预处理滤波器和特征类别对这些变化不太敏感,因此可能是成像生物标志物或构建机器学习模型的良好候选对象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5f/11811471/68ccb5852c95/10554_2024_3312_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验