Suppr超能文献

用于预测化合物-蛋白质亲和力和接触的可解释深度关系网络。

Explainable Deep Relational Networks for Predicting Compound-Protein Affinities and Contacts.

机构信息

Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States.

TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77840, United States.

出版信息

J Chem Inf Model. 2021 Jan 25;61(1):46-66. doi: 10.1021/acs.jcim.0c00866. Epub 2020 Dec 21.

Abstract

Predicting compound-protein affinity is beneficial for accelerating drug discovery. Doing so without the often-unavailable structure data is gaining interest. However, recent progress in structure-free affinity prediction, made by machine learning, focuses on accuracy but leaves much to be desired for interpretability. Defining intermolecular contacts underlying affinities as a vehicle for interpretability; our large-scale interpretability assessment finds previously used attention mechanisms inadequate. We thus formulate a hierarchical multiobjective learning problem, where predicted contacts form the basis for predicted affinities. We solve the problem by embedding protein sequences (by hierarchical recurrent neural networks) and compound graphs (by graph neural networks) with joint attentions between protein residues and compound atoms. We further introduce three methodological advances to enhance interpretability: (1) structure-aware regularization of attentions using protein sequence-predicted solvent exposure and residue-residue contact maps; (2) supervision of attentions using known intermolecular contacts in training data; and (3) an intrinsically explainable architecture where atomic-level contacts or "relations" lead to molecular-level affinity prediction. The first two and all three advances result in DeepAffinity+ and DeepRelations, respectively. Our methods show generalizability in affinity prediction for molecules that are new and dissimilar to training examples. Moreover, they show superior interpretability compared to state-of-the-art interpretable methods: with similar or better affinity prediction, they boost the AUPRC of contact prediction by around 33-, 35-, 10-, and 9-fold for the default test, new-compound, new-protein, and both-new sets, respectively. We further demonstrate their potential utilities in contact-assisted docking, structure-free binding site prediction, and structure-activity relationship studies without docking. Our study represents the first model development and systematic model assessment dedicated to interpretable machine learning for structure-free compound-protein affinity prediction.

摘要

预测化合物-蛋白质亲和力有助于加速药物发现。在没有经常不可用的结构数据的情况下进行预测越来越受到关注。然而,最近在无结构亲和力预测方面的机器学习进展侧重于准确性,但在可解释性方面还有很大的改进空间。我们将亲和力的分子间接触定义为可解释性的载体;我们的大规模可解释性评估发现以前使用的注意力机制不够充分。因此,我们提出了一个分层多目标学习问题,其中预测的接触是预测亲和力的基础。我们通过嵌入蛋白质序列(通过分层递归神经网络)和化合物图(通过图神经网络),并在蛋白质残基和化合物原子之间进行联合注意来解决这个问题。我们进一步引入了三个方法学上的改进来增强可解释性:(1)使用蛋白质序列预测的溶剂暴露和残基-残基接触图对注意力进行结构感知正则化;(2)在训练数据中使用已知的分子间接触来监督注意力;(3)一种内在可解释的架构,其中原子级别的接触或“关系”导致分子级别的亲和力预测。前两种方法和所有三种方法的改进分别导致了 DeepAffinity+和 DeepRelations。我们的方法在对与训练示例不同的新分子的亲和力预测中表现出了泛化能力。此外,与最先进的可解释方法相比,它们在可解释性方面表现出了优越性:在默认测试、新化合物、新蛋白质和两者新的数据集上,它们分别将接触预测的 AUPRC 提高了约 33 倍、35 倍、10 倍和 9 倍,而亲和力预测的性能相似或更好。我们进一步证明了它们在接触辅助对接、无结构结合位点预测和无对接的结构-活性关系研究中的潜在用途。我们的研究代表了第一个专门针对无结构化合物-蛋白质亲和力预测的可解释机器学习的模型开发和系统模型评估。

相似文献

5
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.基于超深度学习模型的蛋白质接触图从头精确预测
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
9
Using Attention-UNet Models to Predict Protein Contact Maps.使用注意力 U-Net 模型预测蛋白质接触图谱。
J Comput Biol. 2024 Jul;31(7):691-702. doi: 10.1089/cmb.2023.0102. Epub 2024 Jul 9.

引用本文的文献

1
A review of deep learning methods for ligand based drug virtual screening.基于配体的药物虚拟筛选的深度学习方法综述。
Fundam Res. 2024 Mar 11;4(4):715-737. doi: 10.1016/j.fmre.2024.02.011. eCollection 2024 Jul.

本文引用的文献

9
Using attribution to decode binding mechanism in neural network models for chemistry.基于归因解码神经网络模型在化学中的结合机制。
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11624-11629. doi: 10.1073/pnas.1820657116. Epub 2019 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验