Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain.
Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
PLoS Biol. 2020 Dec 21;18(12):e3001019. doi: 10.1371/journal.pbio.3001019. eCollection 2020 Dec.
The mismatch negativity (MMN) is a key biomarker of automatic deviance detection thought to emerge from 2 cortical sources. First, the auditory cortex (AC) encodes spectral regularities and reports frequency-specific deviances. Then, more abstract representations in the prefrontal cortex (PFC) allow to detect contextual changes of potential behavioral relevance. However, the precise location and time asynchronies between neuronal correlates underlying this frontotemporal network remain unclear and elusive. Our study presented auditory oddball paradigms along with "no-repetition" controls to record mismatch responses in neuronal spiking activity and local field potentials at the rat medial PFC. Whereas mismatch responses in the auditory system are mainly induced by stimulus-dependent effects, we found that auditory responsiveness in the PFC was driven by unpredictability, yielding context-dependent, comparatively delayed, more robust and longer-lasting mismatch responses mostly comprised of prediction error signaling activity. This characteristically different composition discarded that mismatch responses in the PFC could be simply inherited or amplified downstream from the auditory system. Conversely, it is more plausible for the PFC to exert top-down influences on the AC, since the PFC exhibited flexible and potent predictive processing, capable of suppressing redundant input more efficiently than the AC. Remarkably, the time course of the mismatch responses we observed in the spiking activity and local field potentials of the AC and the PFC combined coincided with the time course of the large-scale MMN-like signals reported in the rat brain, thereby linking the microscopic, mesoscopic, and macroscopic levels of automatic deviance detection.
失匹配负波(MMN)是自动偏差检测的关键生物标志物,被认为源于两个皮质源。首先,听觉皮层(AC)编码频谱规律,并报告频率特异性偏差。然后,前额叶皮层(PFC)中的更抽象表示允许检测潜在行为相关性的上下文变化。然而,该额颞网络背后的神经元相关性的确切位置和时间异步仍然不清楚且难以捉摸。我们的研究在大鼠中呈现了听觉Oddball 范式以及“无重复”对照,以记录神经元尖峰活动和局部场电位中的失匹配反应。虽然听觉系统中的失匹配反应主要是由刺激依赖性效应引起的,但我们发现 PFC 中的听觉反应是由不可预测性驱动的,产生了上下文相关的、相对延迟的、更强壮的、持续时间更长的失匹配反应,主要由预测误差信号活动组成。这种明显不同的组成排除了 PFC 中的失匹配反应可以简单地从听觉系统继承或放大。相反,PFC 对 AC 施加自上而下的影响更为合理,因为 PFC 表现出灵活且强大的预测处理能力,能够比 AC 更有效地抑制冗余输入。值得注意的是,我们在 AC 和 PFC 的尖峰活动和局部场电位中观察到的失匹配反应的时间过程与在大鼠大脑中报告的大规模类似 MMN 的信号的时间过程相吻合,从而将自动偏差检测的微观、介观和宏观水平联系起来。