Suppr超能文献

利用无人机图像识别和机器学习对受砷污染的农田土壤污染情况进行测绘。

Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field.

作者信息

Jia Xiyue, Cao Yining, O'Connor David, Zhu Jin, Tsang Daniel C W, Zou Bin, Hou Deyi

机构信息

School of Environment, Tsinghua University, Beijing 100084, China.

School of Environment, Tsinghua University, Beijing 100084, China; School of Information, University of Michigan, Ann Arbor 48104, United States.

出版信息

Environ Pollut. 2021 Feb 1;270:116281. doi: 10.1016/j.envpol.2020.116281. Epub 2020 Dec 14.

Abstract

Mapping soil contamination enables the delineation of areas where protection measures are needed. Traditional soil sampling on a grid pattern followed by chemical analysis and geostatistical interpolation methods (GIMs), such as Kriging interpolation, can be costly, slow and not well-suited to highly heterogeneous soil environments. Here we propose a novel method to map soil contamination by combining high-resolution aerial imaging (HRAI) with machine learning algorithms. To support model establishment and validation, 1068 soil samples were collected from an arsenic (As) contaminated area in Zhongxiang, Hubei province, China. The average arsenic concentration was 39.88 mg/kg (SD = 213.70 mg/kg), with individual sample points determined as low risk (66.9%), medium risk (29.4%), or high risk (3.7%), respectively. Then, identified features were extracted from a HRAI image of the study area. Four machine learning algorithms were developed to predict As risk levels, including (i) support vector machine (SVM), (ii) multi-layer perceptron (MLP), (iii) random forest (RF), and (iii) extreme random forest (ERF). Among these, we found that the ERF algorithm performed best overall and that its prediction performance was generally better than that of traditional Kriging interpolation. The accuracy of ERF in test area 1 reached 0.87, performing better than RF (0.81), MLP (0.78) and SVM (0.77). The F1-score of ERF for discerning high-risk points in test area 1 was as high as 0.8. The complexity of the distribution of points with different risk levels was a decisive factor in model prediction ability. Identified features in the study area associated with fertilizer factories had the most important contribution to the ERF model. This study demonstrates that HRAI combined with machine learning has good potential to predict As soil risk levels.

摘要

绘制土壤污染情况有助于划定需要采取保护措施的区域。传统的按网格模式进行土壤采样,随后进行化学分析和地质统计插值方法(GIMs),如克里金插值法,可能成本高昂、速度缓慢,且不太适用于高度异质的土壤环境。在此,我们提出一种将高分辨率航空成像(HRAI)与机器学习算法相结合来绘制土壤污染情况的新方法。为支持模型建立和验证,从中国湖北省钟祥市一个砷(As)污染地区采集了1068个土壤样本。砷的平均浓度为39.88毫克/千克(标准差=213.70毫克/千克),各个采样点分别被确定为低风险(66.9%)、中风险(29.4%)或高风险(3.7%)。然后,从研究区域的高分辨率航空成像图像中提取识别出的特征。开发了四种机器学习算法来预测砷风险水平,包括(i)支持向量机(SVM)、(ii)多层感知器(MLP)、(iii)随机森林(RF)和(iii)极端随机森林(ERF)。在这些算法中,我们发现极端随机森林算法总体表现最佳,其预测性能通常优于传统的克里金插值法。极端随机森林算法在测试区域1的准确率达到0.87,优于随机森林(0.81)、多层感知器(0.78)和支持向量机(0.77)。极端随机森林算法在测试区域1辨别高风险点的F1分数高达0.8。不同风险水平点分布的复杂性是模型预测能力的决定性因素。研究区域内与化肥厂相关的识别特征对极端随机森林模型的贡献最大。这项研究表明,高分辨率航空成像与机器学习相结合在预测土壤砷风险水平方面具有良好潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验