Nguyen Giang T, Sopade Peter A
Dept. of Animal Husbandry and Veterinary, Faculty of Agriculture and Natural Resources, An Giang Univ., Long Xuyen City, An Giang Province, Vietnam.
Dept. of Food Science and Engineering, School of Agricultural Sciences, Xichang Univ., Xichang, Sichuan Province, 615013, China.
Compr Rev Food Sci Food Saf. 2018 Sep;17(5):1422-1445. doi: 10.1111/1541-4337.12384. Epub 2018 Aug 17.
Starch digestion is mostly investigated with in vitro techniques, and time-course measurements are common. These yield digestograms that are modeled by theoretical, semitheoretical, and empirical kinetic equations, many of which are reviewed here. The Duggleby model has Michaelis-Menten functions, and its dependent variable is on both sides of the equation with no apparent parameter for maximum digestible starch (D ). The Gaouar and Peleg models are equivalent. They predict both the initial digestible starch (D ) and D , and an average digestion rate, but they can reveal "biratial" digestions. The first-order kinetic model exhibits diverse predictabilities and, when linearized, D is sometimes equated to 100 g/100 g dry starch (100%), it yields an average rate of digestion and can predict negative D . The log of slope (LOS) model is unique in revealing the rapid-to-slow digestion rate phenomenon, but without guidelines to identify such. The LOS model does not sometimes use all the digestogram data, can predict D greater than 100%, and returns zero digestion rate for some digestograms. However, some starchy materials exhibit a slow-to-rapid digestion rate phenomenon, as demonstrated with an example. The modified first-order kinetic model uses all the digestogram data with practical constraints (D ≥ 0 g/100 g dry starch; D ≤ 100 g/100 g dry starch), describes all digestograms, and yields an average digestion rate, but it can also be used for "biratial" digestions. In addition, the logistic and Weibull models are discussed. Using some published data, the computational characteristics of these commonly used models are presented with objective parameters to guide choices.
淀粉消化主要通过体外技术进行研究,时间进程测量很常见。这些测量产生了消化图谱,可通过理论、半理论和经验动力学方程进行建模,本文对其中许多方程进行了综述。达格利比模型具有米氏函数,其因变量在方程两边,没有明显的最大可消化淀粉(D)参数。高阿尔和佩莱格模型是等效的。它们既预测初始可消化淀粉(D)和D,也预测平均消化速率,但它们能揭示“双峰”消化。一级动力学模型表现出不同的预测能力,线性化后,D有时等于100 g/100 g干淀粉(100%),它产生平均消化速率,并且可以预测负的D。斜率对数(LOS)模型在揭示快速到缓慢的消化速率现象方面是独特的,但没有识别此类现象的指导原则。LOS模型有时不会使用所有消化图谱数据,可以预测D大于100%,并且对于一些消化图谱返回零消化速率。然而,一些淀粉质材料表现出从缓慢到快速的消化速率现象,如一个例子所示。修正的一级动力学模型在实际限制条件下(D≥0 g/100 g干淀粉;D≤100 g/100 g干淀粉)使用所有消化图谱数据,描述所有消化图谱,并产生平均消化速率,但它也可用于“双峰”消化。此外,还讨论了逻辑斯蒂模型和威布尔模型。利用一些已发表的数据,给出了这些常用模型的计算特性,并给出客观参数以指导选择。