Am J Epidemiol. 2021 Jul 1;190(7):1341-1348. doi: 10.1093/aje/kwaa283.
New-user designs restricting to treatment initiators have become the preferred design for studying drug comparative safety and effectiveness using nonexperimental data. This design reduces confounding by indication and healthy-adherer bias at the cost of smaller study sizes and reduced external validity, particularly when assessing a newly approved treatment compared with standard treatment. The prevalent new-user design includes adopters of a new treatment who switched from or previously used standard treatment (i.e., the comparator), expanding study sample size and potentially broadening the study population for inference. Previous work has suggested the use of time-conditional propensity-score matching to mitigate prevalent user bias. In this study, we describe 3 "types" of initiators of a treatment: new users, direct switchers, and delayed switchers. Using these initiator types, we articulate the causal questions answered by the prevalent new-user design and compare them with those answered by the new-user design. We then show, using simulation, how conditioning on time since initiating the comparator (rather than full treatment history) can still result in a biased estimate of the treatment effect. When implemented properly, the prevalent new-user design estimates new and important causal effects distinct from the new-user design.
新用户设计限制治疗启动者已成为使用非实验数据研究药物比较安全性和有效性的首选设计。这种设计通过指示和健康坚持者偏差来降低混杂,代价是研究规模较小,外部有效性降低,特别是在评估新批准的治疗与标准治疗相比时。流行的新用户设计包括从标准治疗(即比较剂)转向新治疗的新治疗采用者,扩大了研究样本量,并可能扩大了推断的研究人群。以前的工作表明,使用时间条件倾向得分匹配可以减轻常见用户偏差。在这项研究中,我们描述了治疗的三种“类型”的启动者:新用户、直接转换者和延迟转换者。使用这些启动器类型,我们阐明了流行的新用户设计回答的因果问题,并将其与新用户设计回答的问题进行了比较。然后,我们通过模拟表明,对比较剂(而不是完整的治疗史)启动的时间进行条件处理仍然会导致治疗效果的有偏差估计。当正确实施时,流行的新用户设计估计了与新用户设计不同的新的和重要的因果效应。