School of Physics and Technology, University of Jinan, Jinan, 250022, China.
Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
Nat Commun. 2023 Jun 12;14(1):3456. doi: 10.1038/s41467-023-39190-1.
Solar-thermal storage with phase-change material (PCM) plays an important role in solar energy utilization. However, most PCMs own low thermal conductivity which restricts the thermal charging rate in bulk samples and leads to low solar-thermal conversion efficiency. Here, we propose to regulate the solar-thermal conversion interface in spatial dimension by transmitting the sunlight into the paraffin-graphene composite with side-glowing optical waveguide fiber. This inner-light-supply mode avoids the overheating surface of the PCM, accelerates the charging rate by 123% than that of the traditional surface irradiation mode and increases the solar thermal efficiency to ~94.85%. Additionally, the large-scale device with inner-light-supply mode works efficiently outdoors, indicating the potential of this heat localization strategy in practical application.
基于相变材料(PCM)的太阳能蓄热在太阳能利用中起着重要作用。然而,大多数 PCM 的导热系数较低,这限制了整体样品的热充电速率,导致太阳能-热能转换效率低下。在这里,我们通过将阳光传输到具有侧发光光导纤维的石蜡-石墨烯复合材料中,在空间维度上调节太阳能-热能转换界面。这种内供光模式避免了 PCM 的过热表面,将充电速率提高了 123%,比传统的表面辐照模式提高了 123%,并将太阳能热效率提高到约 94.85%。此外,具有内供光模式的大规模设备在户外高效运行,表明这种热定位策略在实际应用中的潜力。