Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Acc Chem Res. 2021 Jan 5;54(1):22-34. doi: 10.1021/acs.accounts.0c00720. Epub 2020 Dec 22.
Three-dimensional cage-like natural products represent astounding and long-term challenges in the research endeavors of total synthesis. A central issue that synthetic chemists need to address lies in how to efficiently construct the polycyclic frameworks as well as to install the requisite substituent groups. The diterpenoid alkaloids that biogenetically originate from amination of diterpenes and diversify through late-stage skeletal reorganization belong to such a natural product category. As the characteristic components of the and species, these molecules display a rich array of biological activities, some of which are used as clinical drugs. More strikingly, their intricate and beautiful architectures have rendered the diterpenoid alkaloids elusive targets in the synthetic community. The successful preparation of these intriguing compounds relies on the development of innovative synthetic strategies.Our laboratory has explored the total synthesis of a variety of diterpenoid alkaloids and their biogenetically related diterpenes over the past decade. In doing so, we have accessed 6 different types of skeletons (atisine-, denudatine-, arcutane-, arcutine-, napelline-, and hetidine-type) and achieved the total synthesis of 6 natural products (isoazitine, dihydroajaconine, gymnandine, atropurpuran, arcutinine, and liangshanone). Strategically, an oxidative dearomatization/Diels-Alder (OD/DA) cycloaddition sequence was widely employed in our synthesis to form the ubiquitous [2.2.2]-bicyclic ring unit and its related ring-distorted derivatives in these complex target molecules. This protocol, in combination with additional bond-forming key steps, allowed us to prepare the corresponding polycyclic alkaloids and a biogenetically associated diterpene. For example, bioinspired C-H activation, -pinacol, and -Prins cyclizations were used toward a unified approach to the atisine-, denudatine-, and hetidine-type alkaloids via ajaconine intermediates in our first work. To pursue the synthesis of atropurpuran and related arcutine alkaloids, we harnessed a ketyl-olefin radical cyclization to assemble the carbocycle and an -Wacker cyclization to construct the unusual pyrrolidine ring. Furthermore, a one-pot alkene cleavage/Mannich cyclization tactic, sequential Robinson annulation, and intramolecular aldol addition were developed, which facilitated the formation of the napelline alkaloid scaffold and the first total synthesis of liangshanone. Finally, the utility of the Mannich cyclization and enyne cycloisomerization reactions allowed for access to the highly functionalized A/E and C/D ring fragments of aconitine (regarded as the "Holy Grail" of diterpenoid alkaloids). This Account provides insight into our synthetic designs and approaches used toward the synthesis of diterpenoid alkaloids and relevant diterpenes. These endeavors lay a foundation for uncovering the biological profiles of associated molecules and also serve as a reference for preparing other three-dimensionally fascinating natural products.
三维笼状天然产物在全合成研究中代表着惊人的、长期的挑战。合成化学家需要解决的一个核心问题是如何有效地构建多环骨架以及安装所需的取代基。生物起源于二萜的胺化作用并通过后期骨架重排多样化的二萜生物碱就属于此类天然产物类别。作为 和 物种的特征成分,这些分子表现出丰富多样的生物活性,其中一些被用作临床药物。更引人注目的是,它们复杂而美丽的结构使二萜生物碱成为合成领域难以捉摸的目标。这些有趣化合物的成功制备依赖于创新合成策略的发展。
我们实验室在过去十年中探索了多种二萜生物碱及其生物相关二萜的全合成。在此过程中,我们获得了 6 种不同的骨架(阿替辛型、去氢阿替辛型、阿库烷型、阿库汀型、那普利型和海替丁型),并实现了 6 种天然产物(异阿替辛、二氢吖昆碱、 gymnandine、阿托普兰、阿库宁和梁山酮)的全合成。在策略上,我们广泛采用氧化去芳构化/Diels-Alder(OD/DA)环加成序列在这些复杂目标分子中形成普遍存在的[2.2.2]-双环单元及其相关的环扭曲衍生物。该方案与其他键形成关键步骤相结合,使我们能够制备相应的多环生物碱和生物相关的二萜。例如,在我们的第一项工作中,通过 ajaconine 中间体,生物启发的 C-H 活化、-pinacol 和-Prins 环化被用于统一方法合成阿替辛型、去氢阿替辛型和海替丁型生物碱。为了追求阿托普兰和相关阿库烷生物碱的合成,我们利用酮-烯烃自由基环化来组装碳环,利用-Wacker 环化来构建不寻常的吡咯烷环。此外,还开发了一锅烯裂解/Mannich 环化策略、连续 Robinson 环化和分子内羟醛加成,促进了那普利型生物碱支架的形成和梁山酮的首次全合成。最后,Mannich 环化和烯炔环异构化反应的应用使获得乌头碱的高度官能化 A/E 和 C/D 环片段成为可能(被认为是二萜生物碱的“圣杯”)。本报告提供了我们对二萜生物碱和相关二萜合成设计和方法的见解。这些努力为揭示相关分子的生物学特征奠定了基础,也为制备其他三维迷人天然产物提供了参考。