Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou 318000, China.
Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
Acc Chem Res. 2021 Feb 16;54(4):875-889. doi: 10.1021/acs.accounts.0c00798. Epub 2021 Jan 28.
Tetracyclic diterpenoids (C) mainly refer to the plant terpenoids bearing biogenetically related carbon skeletons derived from copalyl diphosphates (-CPP and -CPP). This large family contains over 1600 known members that can be categorized into 11 major structural types. Among them, more than three-quarters share a bridged bicyclo[3.2.1]octane subunit, which is also an important branching point in biosynthesis en route to the other types of bicyclic scaffolds, such as bicyclo[2.2.2]-, bicyclo[3.3.0]-, and tricyclo[3.2.1.0]octanes. Combined with the significance of its stereochemical importance in biological activity, the assembly of the bicyclo[3.2.1]octane skeletons is critical to the success of the whole synthesis blueprint toward tetracyclic diterpenoids. Although a number of inspiring methodologies have been disclosed, general approaches by the incorporation of innovative cascade reactions permitting access to diverse structural types of tetracyclic diterpenoids remain limited and in urgent demand.Because of the long-standing interest in the synthesis of bridged diterpenoids, we have recently developed two complementary types of oxidative dearomatization induced (ODI) cascade approaches to the rapid and efficient construction of bicyclo[3.2.1]octane skeletons. In this Account, we summarize our original synthesis design, methodology development, and the application of these two strategies in tetracyclic diterpenoid synthesis during the past few years in our laboratory.First, we detail our preliminary investigation of the ODI-[5 + 2] cycloaddition/pinacol rearrangement cascade reaction, which showed a wide scope of vinylphenol substrates and led to cyclopentane and cyclohexane-fused bicyclo[3.2.1]octanes in good yields with excellent dr values. Next, we describe the utilization of this ODI-[5 + 2] cascade reaction which resulted in the asymmetric total syntheses of four highly oxygenated -kauranoids. The strategy concerning accurate stereochemical control in the ODI-[5 + 2] cycloaddition was then successfully transplanted to the total syntheses of three stemaranoids, thus providing a straightforward and diastereoselective route to C9-ethano-bridged tetracyclic diterpenoids. To access more complex diterpenoid rhodomollanol A, we exploited two additional biomimetic rearrangements, namely, the Dieckmann fragmentation/vinylogous Dieckmann cyclization cascade and the photo-Nazarov cyclization/intramolecular cycloetherification cascade. Taken together with the ODI-[5 + 2] cascade, the asymmetric total synthesis of the target molecule was realized, which shed light on the biogenetic pathway of the unprecedented rhodomollane-type carbon framework. Finally, we describe an ODI-Diels-Alder/Beckwith-Dowd cascade approach as a valuable supplement to the ODI-[5 + 2] cascade for the fabrication of cycloheptane-fused bicyclo[3.2.1]octane skeletons. Its versatility was also demonstrated by the total syntheses of two challenging grayanane diterpenoids. In view of the high functional-group compatibility and scalability, we anticipate that the two novel cascade approaches will find further use in the field of complex natural product synthesis.
四环二萜(C)主要是指具有生物合成相关碳骨架的植物萜类化合物,这些碳骨架来源于贝壳杉烯二磷酸酯(-CPP 和-CPP)。这个大家族包含超过 1600 种已知成员,可分为 11 种主要结构类型。其中,超过四分之三的成员共享桥连双环[3.2.1]辛烷亚基,这也是生物合成过程中通往其他双环支架类型(如双环[2.2.2]-、双环[3.3.0]-和三环[3.2.1.0]辛烷)的重要分支点。结合其在生物活性中的立体化学重要性的意义,双环[3.2.1]辛烷骨架的组装对于四环二萜类化合物全合成的成功至关重要。尽管已经披露了许多鼓舞人心的方法学,但通过引入创新的级联反应来获得多种结构类型的四环二萜的一般方法仍然有限且迫切需要。
由于对桥连二萜合成的长期关注,我们最近开发了两种互补类型的氧化去芳构化诱导(ODI)级联方法,以快速有效地构建双环[3.2.1]辛烷骨架。在本账目中,我们总结了我们实验室在过去几年中对这两种策略在四环二萜合成中的原始合成设计、方法学开发和应用的研究。
首先,我们详细介绍了我们对 ODI-[5+2]环加成/频哪醇重排级联反应的初步研究,该反应显示出广泛的乙烯基苯酚底物范围,并以良好的收率和优异的 dr 值得到了环戊烷和环己烷稠合的双环[3.2.1]辛烷。接下来,我们描述了利用这种 ODI-[5+2]级联反应进行不对称全合成的情况,该反应导致了四种高度氧化的-kauranoids 的合成。然后,成功地将 ODI-[5+2]级联反应中关于准确立体化学控制的策略移植到三种 stemaranoids 的全合成中,从而为 C9-乙叉桥连四环二萜类化合物提供了一种直接和非对映选择性的途径。为了获得更复杂的二萜 rhodomollanol A,我们利用了两种额外的仿生重排反应,即Dieckmann 断裂/乙烯基 Dieckmann 环化级联反应和光 Nazarov 环化/分子内环醚化级联反应。与 ODI-[5+2]级联反应相结合,实现了目标分子的不对称全合成,为前所未有的 rhodomollane 型碳骨架的生物合成途径提供了启示。最后,我们描述了一种 ODI-Diels-Alder/Beckwith-Dowd 级联方法,作为 ODI-[5+2]级联方法的有价值补充,用于构建环己烷稠合的双环[3.2.1]辛烷骨架。其多功能性还通过两种具有挑战性的 grayanane 二萜的全合成得到了证明。鉴于高官能团兼容性和可扩展性,我们预计这两种新的级联方法将在复杂天然产物合成领域得到进一步应用。