Suppr超能文献

聚吡咯/MoS纳米复合材料基于电导率的氨传感特性

Electrical Conductivity Based Ammonia Sensing Properties of Polypyrrole/MoS Nanocomposite.

作者信息

Ahmad Sharique, Khan Imran, Husain Ahmad, Khan Anish, Asiri Abdullah M

机构信息

Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India.

Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India.

出版信息

Polymers (Basel). 2020 Dec 18;12(12):3047. doi: 10.3390/polym12123047.

Abstract

Polypyrrole (PPy) and Polypyrrole/MoS (PPy/MoS) nanocomposites were successfully prepared, characterized and studied for ammonia sensing properties. The as-prepared PPy and PPy/MoS nanocomposites were confirmed by FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) techniques. The ammonia sensing properties of PPy and PPy/MoS nanocomposites were studied in terms of change in DC electrical conductivity on exposure to ammonia vapors followed by ambient air at room temperature. It was observed that the incorporation of MoS in PPy showed high sensitivity, significant stability and excellent reversibility. The enhanced sensing properties of PPy/MoS nanocomposites could be attributed to comparatively high surface area, appropriate sensing channels and efficiently available active sites. The sensing mechanism is explained on the basis of simple acid-base chemistry of polypyrrole.

摘要

成功制备、表征并研究了聚吡咯(PPy)和聚吡咯/二硫化钼(PPy/MoS)纳米复合材料的氨传感特性。通过傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)技术对所制备的PPy和PPy/MoS纳米复合材料进行了表征。在室温下,研究了PPy和PPy/MoS纳米复合材料在暴露于氨气后再暴露于环境空气中时直流电导率的变化,以此来研究它们的氨传感特性。观察到在PPy中掺入MoS表现出高灵敏度、显著的稳定性和优异的可逆性。PPy/MoS纳米复合材料传感性能的增强可归因于相对较高的表面积、合适的传感通道和有效的活性位点。基于聚吡咯简单的酸碱化学原理对传感机制进行了解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c389/7767276/5eb23c27a868/polymers-12-03047-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验