Suppr超能文献

测量地表温度、近红外和短波红外反射率以估算植被中的水分可利用性。

Measuring land surface temperature, near-infrared and short-wave infrared reflectance for estimation of water availability in vegetation.

作者信息

Holzman Mauro, Rivas Raúl, Bayala Martín, Pasapera José

机构信息

Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Hidrología de Llanuras "Dr. Eduardo J. Usunoff" (IHLLA), Rep. Italia 780, B7300 Azul, Argentina.

Comisión de Investigaciones Científicas de la provincia de Buenos Aires, Instituto de Hidrología de Llanuras "Dr. Eduardo J. Usunoff" (IHLLA), Tandil B7000, Argentina.

出版信息

MethodsX. 2020 Dec 9;8:101172. doi: 10.1016/j.mex.2020.101172. eCollection 2021.

Abstract

The vegetation water status is a crucial variable for modelling of drought impact, vegetation productivity and water fluxes. Methods for spatial estimation of this variable still need to be improved. The integration of remotely sensed data of land surface temperature (LST) and water vegetation indices based on near-infrared (NIR) and short-wave infrared (SWIR) reflectance for estimation of vegetation water content and water available for evapotranspiration require more analysis. This study contains a detailed method and measurements of LST, NIR and SWIR reflectance of soybean, corn and barley taken in field campaigns in central Argentine Pampas and laboratory with a ST PRO Raytek (8-14 µm) and a spectrometer SVC HR-1024i (0.35 and 2.5 µm). Also, relative water content of leaves was measured in laboratory during the dehydration process. This method and dataset could be also used for researching other wavelengths between 0.35 and 2.5 µm as indicator of water vegetation status (e.g. solar-induced chlorophyll fluorescence, photosynthesis).•Procedures useful to measure field spectra of vegetation are presented.•Not only the traditional method to measure leaves spectra in laboratory, but also in field were applied.•The method allows the integration of spectra and thermal data as a proxy of vegetation water status.

摘要

植被水分状况是模拟干旱影响、植被生产力和水分通量的关键变量。该变量的空间估算方法仍需改进。基于近红外(NIR)和短波红外(SWIR)反射率的陆地表面温度(LST)遥感数据与水植被指数相结合以估算植被含水量和可用于蒸散的水分,这需要更多分析。本研究包含在阿根廷中部潘帕斯草原野外活动以及在实验室中使用ST PRO Raytek(8 - 14微米)和光谱仪SVC HR - 1024i(0.35和2.5微米)对大豆、玉米和大麦的LST、NIR和SWIR反射率进行详细测量的方法。此外,在实验室脱水过程中测量了叶片的相对含水量。该方法和数据集也可用于研究0.35至2.5微米之间的其他波长作为水植被状况的指标(例如太阳诱导叶绿素荧光、光合作用)。•介绍了测量植被野外光谱的有用程序。•不仅应用了在实验室测量叶片光谱的传统方法,还应用了在野外测量的方法。•该方法允许将光谱和热数据整合为植被水分状况的替代指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8410/7744747/b0ef7442c5a5/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验