He Mingyuan, Lv Chenwei, Lin Hai-Qing, Zhou Qi
Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA.
Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China.
Sci Adv. 2020 Dec 18;6(51). doi: 10.1126/sciadv.abd4699. Print 2020 Dec.
The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.
实验室中超冷极性分子的实现将物理和化学推向了新领域。特别是,这些极性分子为科学家提供了前所未有的机会,以探索量子效应变得显著的超冷状态下的化学反应。然而,关于两体损失如何依赖于相互作用多体系统中的量子关联这一关键问题,迄今为止仍未解决。在此,我们提出了一些普适关系,这些关系将两体损失与其他物理可观测量直接联系起来,包括动量分布和密度关联函数。这些关系对于任意微观参数(如粒子数、温度和相互作用强度)均有效,揭示了接触(稀量子系统的一个基本量)在确定多体环境中量子反应性分子的反应速率方面的关键作用。我们的工作为一个交织着量子化学、原子分子与光学物理以及凝聚态物理的未探索领域打开了大门。