Suppr超能文献

深度学习在生成潜在N-甲基-D-天冬氨酸受体拮抗剂中的应用与评估

Application and assessment of deep learning for the generation of potential NMDA receptor antagonists.

作者信息

Schultz Katherine J, Colby Sean M, Yesiltepe Yasemin, Nuñez Jamie R, McGrady Monee Y, Renslow Ryan S

机构信息

Pacific Northwest National Laboratory, Richland, WA, USA.

出版信息

Phys Chem Chem Phys. 2021 Jan 21;23(2):1197-1214. doi: 10.1039/d0cp03620j.

Abstract

Uncompetitive antagonists of the N-methyl d-aspartate receptor (NMDAR) have demonstrated therapeutic benefit in the treatment of neurological diseases such as Parkinson's and Alzheimer's, but some also cause dissociative effects that have led to the synthesis of illicit drugs. The ability to generate NMDAR antagonists in silico is therefore desirable for both new medication development and preempting and identifying new designer drugs. Recently, generative deep learning models have been applied to de novo drug design as a means to expand the amount of chemical space that can be explored for potential drug-like compounds. In this study, we assess the application of a generative model to the NMDAR to achieve two primary objectives: (i) the creation and release of a comprehensive library of experimentally validated NMDAR phencyclidine (PCP) site antagonists to assist the drug discovery community and (ii) an analysis of both the advantages conferred by applying such generative artificial intelligence models to drug design and the current limitations of the approach. We apply, and provide source code for, a variety of ligand- and structure-based assessment techniques used in standard drug discovery analyses to the deep learning-generated compounds. We present twelve candidate antagonists that are not available in existing chemical databases to provide an example of what this type of workflow can achieve, though synthesis and experimental validation of these compounds are still required.

摘要

N-甲基-D-天冬氨酸受体(NMDAR)的非竞争性拮抗剂已在帕金森病和阿尔茨海默病等神经疾病的治疗中显示出治疗益处,但有些拮抗剂也会产生分离效应,这导致了非法药物的合成。因此,无论是新药研发,还是预防和识别新型设计药物,通过计算机模拟生成NMDAR拮抗剂的能力都很有必要。最近,生成式深度学习模型已应用于从头药物设计,以此来扩大可探索潜在类药物化合物的化学空间量。在本研究中,我们评估一种生成模型在NMDAR上的应用,以实现两个主要目标:(i)创建并发布一个经过实验验证的NMDAR苯环己哌啶(PCP)位点拮抗剂的综合库,以帮助药物发现领域的研究人员;(ii)分析将这种生成式人工智能模型应用于药物设计所带来的优势以及该方法当前的局限性。我们将标准药物发现分析中使用的各种基于配体和结构的评估技术应用于深度学习生成的化合物,并提供了源代码。我们展示了12种现有化学数据库中没有的候选拮抗剂,作为这种工作流程所能实现目标的一个示例,不过这些化合物仍需要进行合成和实验验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验