State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
ACS Synth Biol. 2021 Jan 15;10(1):125-131. doi: 10.1021/acssynbio.0c00488. Epub 2020 Dec 24.
Microbial synthesis of chemicals typically requires the redistribution of metabolic flux toward the synthesis of targeted products. Dynamic control is emerging as an effective approach for solving the hurdles mentioned above. As light could control the cell behavior in a spatial and temporal manner, the optogenetic-CRISPR interference (opto-CRISPRi) technique that allocates the metabolic resources according to different optical signal frequencies will enable bacteria to be controlled between the growth phase and the production stage. In this study, we applied a blue light-sensitive protein EL222 to regulate the expression of the dCpf1-mediated CRISPRi system that turns off the competitive pathways and redirects the metabolic flux toward the heterologous muconic acid synthesis in . We found that the opto-CRISPRi system dynamically regulating the suppression of the central metabolism and competitive pathways could increase the muconic acid production by 130%. These results demonstrated that the opto-CRISPRi platform is an effective method for enhancing chemical synthesis with broad utilities.
微生物化学合成通常需要重新分配代谢通量以合成目标产物。动态控制正成为解决上述障碍的有效方法。由于光可以在时空上控制细胞行为,因此根据不同的光学信号频率分配代谢资源的光遗传学-CRISPR 干扰(opto-CRISPRi)技术将使细菌能够在生长阶段和生产阶段之间进行控制。在这项研究中,我们应用了一种蓝光敏感蛋白 EL222 来调节 dCpf1 介导的 CRISPRi 系统的表达,该系统可以关闭竞争途径,并将代谢通量重新导向异源粘康酸合成。我们发现,动态调节抑制中心代谢和竞争途径的 opto-CRISPRi 系统可以将粘康酸的产量提高 130%。这些结果表明,opto-CRISPRi 平台是一种增强化学合成的有效方法,具有广泛的应用。