Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
ACS Synth Biol. 2021 Apr 16;10(4):786-798. doi: 10.1021/acssynbio.0c00591. Epub 2021 Mar 31.
is a nonmodel bacterium that is well suited for valorizing lignin. Despite recent advances in our systems-level understanding of its versatile metabolism, studies of its gene functions at a single gene level are still lagging. Elucidating gene functions in nonmodel organisms is challenging due to limited genetic engineering tools that are convenient to use. To address this issue, we developed a simple gene repression system based on CRISPR interference (CRISPRi). This gene repression system uses a T7 RNA polymerase system to express a small guide RNA, demonstrating improved repression compared to the previously demonstrated CRISPRi system (, the maximum repression efficiency improved from 58% to 85%). Additionally, our cloning strategy allows for building multiple CRISPRi plasmids in parallel without any PCR step, facilitating the engineering of this GC-rich organism. Using the improved CRISPRi system, we confirmed the annotated roles of four metabolic pathway genes, which had been identified by our previous transcriptomic analysis to be related to the consumption of benzoate, vanillate, catechol, and acetate. Furthermore, we showed our tool's utility by demonstrating the inducible accumulation of muconate that is a precursor of adipic acid, an important monomer for nylon production. While the maximum muconate yield obtained using our tool was 30% of the yield obtained using gene knockout, our tool showed its inducibility and partial repressibility. Our CRISPRi tool will be useful to facilitate functional studies of this nonmodel organism and engineer this promising microbial chassis for lignin valorization.
是一种非模式细菌,非常适合木质素的增值利用。尽管我们在系统水平上对其多功能代谢的理解最近有了进展,但对其单个基因水平的基因功能的研究仍然滞后。由于缺乏方便使用的通用遗传工程工具,阐明非模式生物的基因功能具有挑战性。为了解决这个问题,我们开发了一种基于 CRISPR 干扰(CRISPRi)的简单基因抑制系统。该基因抑制系统使用 T7 RNA 聚合酶系统表达小向导 RNA,与之前展示的 CRISPRi 系统相比,抑制效果得到了改善(,最大抑制效率从 58%提高到 85%)。此外,我们的克隆策略允许在不进行任何 PCR 步骤的情况下并行构建多个 CRISPRi 质粒,从而方便了这个 GC 丰富的生物体的工程改造。使用改进的 CRISPRi 系统,我们确认了四个代谢途径基因的注释作用,这些基因在我们之前的转录组分析中被确定与苯甲酸、香草酸盐、儿茶酚和乙酸的消耗有关。此外,我们通过展示作为己二酸前体的顺丁烯二酸的诱导积累,证明了我们工具的实用性,己二酸是尼龙生产的重要单体。虽然使用我们的工具获得的最大顺丁烯二酸产量仅为基因敲除获得的产量的 30%,但我们的工具显示了其诱导性和部分抑制性。我们的 CRISPRi 工具将有助于促进对这种非模式生物的功能研究,并对这种有前途的木质素增值微生物底盘进行工程改造。