Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
Microb Cell Fact. 2017 Nov 3;16(1):188. doi: 10.1186/s12934-017-0802-x.
Multiplex control of metabolic pathway genes is essential for maximizing product titers and conversion yields of fuels, chemicals, and pharmaceuticals in metabolic engineering. To achieve this goal, artificial transcriptional regulators, such as clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi), have been developed to specifically repress genes of interest.
In this study, we deployed a tunable CRISPRi system for multiplex repression of competing pathway genes and, thus, directed carbon flux toward production of molecules of interest in Escherichia coli. The tunable CRISPRi system with an array of sgRNAs successfully repressed four endogenous genes (pta, frdA, ldhA, and adhE) individually and in double, triple, or quadruple combination that are involved in the formation of byproducts (acetate, succinate, lactate, and ethanol) and the consumption of NADH in E. coli. Single-target CRISPRi effectively reduced the amount of each byproduct and, interestingly, pta repression also decreased ethanol production (41%), whereas ldhA repression increased ethanol production (197%). CRISPRi-mediated multiplex repression of competing pathway genes also resulted in simultaneous reductions of acetate, succinate, lactate, and ethanol production in E. coli. Among 15 conditions repressing byproduct-formation genes, we chose the quadruple-target CRISPRi condition to produce n-butanol in E. coli as a case study. When heterologous n-butanol-pathway enzymes were introduced into E. coli simultaneously repressing the expression of the pta, frdA, ldhA, and adhE genes via CRISPRi, n-butanol yield and productivity increased up to 5.4- and 3.2-fold, respectively.
We demonstrated the tunable CRISPRi system to be a robust platform for multiplex modulation of endogenous gene expression that can be used to enhance biosynthetic pathway productivity, with n-butanol as the test case. CRISPRi applications potentially enable the development of microbial "smart cell" factories capable of producing other industrially valuable products.
在代谢工程中,为了最大限度地提高燃料、化学品和药物的代谢途径基因产物产量和转化率,需要对代谢途径基因进行多重控制。为了实现这一目标,已经开发了人工转录调控因子,如成簇规律间隔短回文重复(CRISPR)干扰(CRISPRi),以专门抑制感兴趣的基因。
在这项研究中,我们部署了一个可调 CRISPRi 系统,用于多重抑制竞争途径基因,从而将碳通量引导到大肠杆菌中目标分子的生产。带有 sgRNA 阵列的可调 CRISPRi 系统成功地单独和双重、三重或四重组合抑制了四个内源性基因(pta、frdA、ldhA 和 adhE),这些基因参与了副产物(乙酸盐、琥珀酸盐、乳酸盐和乙醇)的形成和 NADH 的消耗。单靶标 CRISPRi 有效地减少了每种副产物的量,有趣的是,pta 抑制也降低了乙醇产量(41%),而 ldhA 抑制则增加了乙醇产量(197%)。CRISPRi 介导的竞争途径基因的多重抑制也导致了大肠杆菌中乙酸盐、琥珀酸盐、乳酸盐和乙醇产量的同时降低。在抑制副产物形成基因的 15 种条件中,我们选择了四重靶标 CRISPRi 条件,以将 n-丁醇作为大肠杆菌中的生产案例。当异源 n-丁醇途径酶同时被引入通过 CRISPRi 抑制 pta、frdA、ldhA 和 adhE 基因的表达时,n-丁醇产量和生产力分别提高了 5.4 倍和 3.2 倍。
我们证明了可调 CRISPRi 系统是一种强大的内源性基因表达多重调节平台,可用于提高生物合成途径的生产力,以 n-丁醇为例。CRISPRi 的应用有可能使微生物“智能细胞”工厂能够生产其他具有工业价值的产品。