Suppr超能文献

蝉翼的复制成型:合成点上水对纳米结构特征尺寸的作用。

Replica molding of cicada wings: The role of water at point of synthesis on nanostructure feature size.

机构信息

School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.

National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland.

出版信息

Biointerphases. 2020 Dec 23;15(6):061017. doi: 10.1116/6.0000637.

Abstract

Many natural surfaces, including the wings of cicada insects, have shown to display bactericidal properties as a result of surface topography. Moreover, the size and distribution of the surface features (on the nano- and microscale) are known to influence the efficacy of the surface at inhibiting bacterial cell growth. While these types of natural surfaces illustrate the effect of structure on the bactericidal activity, a deeper understanding can be achieved by creating surfaces of different feature sizes. This is essential in order to understand the effects of changes of surface topography on bacteria-surface interactions. To this end, we have performed a series of replica molding processes of the wings of the Megapomponia Intermedia cicada to prepare wing replicas in polyethylene glycol (PEG), which possess the topographical features of the wing surface, with a minimum loss of feature resolution. Atomic force microscopy characterization of these patterned surfaces in both air and aqueous environments shows that by controlling the swelling characteristics of the PEG, we can control the ultimate swollen dimensions of the nanopillar structures on the surface of PEG. As a result, by using a single wing with an average nanopillar height of 220 nm, different patterned PEG samples with nanopillar heights ranging from 180 to 307 nm were produced.

摘要

许多天然表面,包括蝉翼,都显示出具有杀菌性能,这是由于其表面形貌。此外,表面特征(纳米和微米尺度)的大小和分布已知会影响表面抑制细菌细胞生长的效果。虽然这些类型的天然表面说明了结构对杀菌活性的影响,但通过创建具有不同特征大小的表面可以获得更深入的理解。这对于了解表面形貌变化对细菌-表面相互作用的影响至关重要。为此,我们对 Megapomponia Intermedia 蝉的翅膀进行了一系列复模复制工艺,以制备具有翅膀表面形貌的聚乙二醇(PEG)翅膀复制品,其特征分辨率最小。在空气和水两种环境中对这些图案化表面进行原子力显微镜表征表明,通过控制 PEG 的溶胀特性,我们可以控制 PEG 表面上纳米柱结构的最终溶胀尺寸。因此,使用具有平均纳米柱高度为 220nm 的单个翅膀,可以生产出具有纳米柱高度在 180nm 至 307nm 之间的不同图案化 PEG 样品。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验