Suppr超能文献

采用电子束光刻技术在钛上对蝉翼进行纳米图案仿生的系统方法。

A systematic approach towards biomimicry of nanopatterned cicada wings on titanium using electron beam lithography.

机构信息

Centre for Biomedical Technologies, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4000, Australia.

Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072, Australia.

出版信息

Nanotechnology. 2021 Feb 5;32(6):065301. doi: 10.1088/1361-6528/abbeaa.

Abstract

The interaction of bacteria on nanopatterned surfaces has caught attention since the discovery of the bactericidal property of cicada wing surfaces. While many studies focused on the inspiration of such surfaces, nanolithography-based techniques are seldom used due to the difficulties in fabricating highly dense (number of pillars per unit area), geometrical nanostructured surfaces. Here we present a systematic modelling approach for optimising the electron beam lithography parameters in order to fabricate biomimicked nanopillars of varying patterned geometries. Monte Carlo simulation was applied to optimize the beam energy and pattern design prior to the experimental study. We optimized the processing parameters such as exposure factor, write field size, pitch, the different types and thicknesses of the PMMA resist used, and the shape of the feature (circle or a dot) for the fabrication of nanopillars to achieve the best lift-off with repeatable result. Our simulation and experimental results showed that a circle design with a voltage of 30 kV and 602 nm thickness of PMMA 495 A4 as base layers and 65 nm of PMMA 950 A2 as top layer achieves the best results. The antibacterial activity was also validated on the representative fabricated titanium nanopillar surface. The surface with a base diameter of 94.4 nm, spike diameter of 12.6 nm, height of 115.6 nm, density of 43/μm, aspect ratio of 2.16 and centre to centre distance of 165.8 nm was the optimum surface for antibacterial activity. Such a systematic design approach for fabrication of insect wing-mimicked closely packed nanopillars have not been investigated before which provides an excellent platform for biomedical Ti implants.

摘要

细菌在纳米图案化表面上的相互作用自蝉翼具有杀菌性能的发现以来引起了人们的关注。虽然许多研究都集中在对这种表面的启发上,但由于制造高密度(单位面积的支柱数量)、几何纳米结构表面的困难,基于纳米光刻的技术很少被使用。在这里,我们提出了一种系统的建模方法,用于优化电子束光刻参数,以制造具有不同图案几何形状的仿生纳米柱。在进行实验研究之前,应用蒙特卡罗模拟来优化光束能量和图案设计。我们优化了处理参数,例如曝光因子、写入场大小、间距、使用的不同类型和厚度的 PMMA 抗蚀剂以及特征的形状(圆形或点),以实现最佳的剥离效果并获得可重复的结果。我们的模拟和实验结果表明,对于圆形设计,使用 30 kV 的电压和 602nm 厚的 PMMA 495 A4 作为基层以及 65nm 厚的 PMMA 950 A2 作为顶层可以获得最佳结果。还在具有代表性的钛纳米柱表面上验证了抗菌活性。基底直径为 94.4nm、刺直径为 12.6nm、高度为 115.6nm、密度为 43/μm、纵横比为 2.16 且中心到中心距离为 165.8nm 的表面具有最佳的抗菌活性。这种制造昆虫翅膀模拟的紧密堆积纳米柱的系统设计方法以前没有被研究过,它为生物医学 Ti 植入物提供了一个极好的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验