Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain.
Biophys J. 2013 Feb 19;104(4):835-40. doi: 10.1016/j.bpj.2012.12.046.
The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials.
蝉(Psaltoda claripennis)翅膀表面的纳米图案代表了一类新型生物材料的首个实例,这类材料可仅通过其物理表面结构在接触时杀死细菌。这些翅膀为开发具有更高抗细菌污染和感染能力的新型功能表面提供了模型。我们提出了细菌细胞与蝉翅膀表面结构之间相互作用的生物物理模型,并表明机械性能,特别是细胞刚性,是决定细菌对翅膀表面杀菌性质的抗性/敏感性的关键因素。我们通过微波辐射细胞来降低表面抗性菌株的刚性,从而使它们易受翅膀效应的影响,从而在实验中证实了这一点。我们的研究结果表明,将蝉翅膀纳米图案纳入抗菌纳米材料的设计中具有潜在的益处。