Suppr超能文献

神经网络在心律失常诊断和治疗中的贡献。

Contribution of neural networks in the diagnosis and treatment of cardiac arrhythmia.

机构信息

Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.

Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt.

出版信息

Discov Med. 2020 Jul-Aug;30(159):27-38.

Abstract

Arrhythmia is a dangerous disease in which the heart rhythm varies and it may be very fast or very slow. Rapid heartbeats can lead to shortness of breath, chest pain, and sudden weakness, whereas slow heartbeats can lead to dizziness, problems with concentration, and constant stress. Finding an effective treatment for arrhythmia has become a very important endeavor for researchers and clinicians. In this article, we review the latest methodologies used in arrhythmia diagnosis and treatment. They include the application of five different types of artificial neural networks trained by machine learning and powered by artificial intelligence: convolutional, recurrent, feedforward, radial basis function, and modular neural network. Some of these methodologies are merged to enhance accuracy and efficacy. This review suggests that more research needs to be carried out in merging neural network types for their application in electrocardiogram (ECG).

摘要

心律失常是一种危险的疾病,其节律变化,可能非常快或非常慢。快速的心跳可能导致呼吸急促、胸痛和突然虚弱,而缓慢的心跳可能导致头晕、注意力集中问题和持续的压力。为心律失常找到有效的治疗方法已成为研究人员和临床医生的一项非常重要的努力。在本文中,我们回顾了心律失常诊断和治疗中使用的最新方法。它们包括应用五种不同类型的人工神经网络,这些神经网络由机器学习训练并由人工智能提供动力:卷积、递归、前馈、径向基函数和模块化神经网络。其中一些方法被合并以提高准确性和疗效。这篇综述表明,需要进行更多的研究来合并神经网络类型,以便将其应用于心电图(ECG)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验