Suppr超能文献

卷积神经网络使用标准 12 导联心电图的 2D 时频特征图对 8 种心律失常进行分类。

Convolutional neural network for classification of eight types of arrhythmia using 2D time-frequency feature map from standard 12-lead electrocardiogram.

机构信息

Kumoh National Institute of Technology, IT Convergence Engineering, Gumi, 39253, Republic of Korea.

Kumoh National Institute of Technology, Medical IT Convergence Engineering, Gumi, 39253, Republic of Korea.

出版信息

Sci Rep. 2021 Oct 14;11(1):20396. doi: 10.1038/s41598-021-99975-6.

Abstract

Electrocardiograms (ECGs) are widely used for diagnosing cardiac arrhythmia based on the deformation of signal shapes due to changes in various heart diseases. However, these abnormal signs may not be observed in some 12 ECG channels, depending on the location, the heart shape, and the type of cardiac arrhythmia. Therefore, it is necessary to closely and comprehensively observe ECG records acquired from 12 channel electrodes to diagnose cardiac arrhythmias accurately. In this study, we proposed a clustering algorithm that can classify persistent cardiac arrhythmia as well as episodic cardiac arrhythmias using the standard 12-lead ECG records and the 2D CNN model using the time-frequency feature maps to classify the eight types of arrhythmias and normal sinus rhythm. The standard 12-lead ECG records were provided by China Physiological Signal Challenge 2018 and consisted of 6877 patients. The proposed algorithm showed high performance in classifying persistent cardiac arrhythmias; however, its accuracy was somewhat low in classifying episodic arrhythmias. If our proposed model is trained and verified using more clinical data, we believe it can be used as an auxiliary device for diagnosing cardiac arrhythmias.

摘要

心电图(ECG)广泛用于诊断心律失常,其依据是由于各种心脏病引起的信号形状变形。然而,根据位置、心脏形状和心律失常类型的不同,这些异常信号可能在 12 个心电图通道中的某些通道中观察不到。因此,有必要密切而全面地观察从 12 个通道电极获得的心电图记录,以准确诊断心律失常。在这项研究中,我们提出了一种聚类算法,该算法可以使用标准的 12 导联心电图记录和二维卷积神经网络(2D CNN)模型使用时频特征图来对 8 种心律失常和正常窦性节律进行分类,从而对持续性心律失常和阵发性心律失常进行分类。标准的 12 导联心电图记录由中国生理信号挑战赛 2018 提供,包含 6877 名患者。所提出的算法在分类持续性心律失常方面表现出了很高的性能,但在分类阵发性心律失常时准确性有些低。如果我们的模型使用更多的临床数据进行训练和验证,我们相信它可以作为诊断心律失常的辅助设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb4/8516863/b8b8ebd5f8d8/41598_2021_99975_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验