Li Yong, Hessel Anthony L, Unger Andreas, Ing David, Recker Jannik, Koser Franziska, Freundt Johanna K, Linke Wolfgang A
Institute of Physiology II, University of Muenster, Muenster, Germany.
Elife. 2020 Dec 24;9:e64107. doi: 10.7554/eLife.64107.
The giant muscle protein titin is a major contributor to passive force; however, its role in active force generation is unresolved. Here, we use a novel titin-cleavage (TC) mouse model that allows specific and rapid cutting of elastic titin to quantify how titin-based forces define myocyte ultrastructure and mechanics. We show that under mechanical strain, as TC doubles from heterozygous to homozygous TC muscles, Z-disks become increasingly out of register while passive and active forces are reduced. Interactions of elastic titin with sarcomeric actin filaments are revealed. Strikingly, when titin-cleaved muscles contract, myosin-containing A-bands become split and adjacent myosin filaments move in opposite directions while also shedding myosins. This establishes intact titin filaments as critical force-transmission networks, buffering the forces observed by myosin filaments during contraction. To perform this function, elastic titin must change stiffness or extensible length, unveiling its fundamental role as an activation-dependent spring in contracting muscle.
巨大的肌肉蛋白肌联蛋白是被动力的主要贡献者;然而,其在主动力产生中的作用尚未明确。在这里,我们使用一种新型的肌联蛋白切割(TC)小鼠模型,该模型允许对弹性肌联蛋白进行特异性快速切割,以量化基于肌联蛋白的力如何定义心肌细胞的超微结构和力学特性。我们发现,在机械应变下,随着TC从杂合型肌肉增加到纯合型肌肉,Z盘越来越失调,同时被动力和主动力均降低。揭示了弹性肌联蛋白与肌节肌动蛋白丝之间的相互作用。令人惊讶的是,当肌联蛋白切割的肌肉收缩时,含肌球蛋白的A带会分裂,相邻的肌球蛋白丝向相反方向移动,同时也会脱落肌球蛋白。这确立了完整的肌联蛋白丝作为关键的力传递网络,缓冲收缩过程中肌球蛋白丝所承受的力。为了执行这一功能,弹性肌联蛋白必须改变其刚度或可延伸长度,揭示了其作为收缩肌肉中依赖于激活的弹簧的基本作用。