Simoncelli Sabrina, Griffié Juliette, Williamson David J, Bibby Jack, Bray Cara, Zamoyska Rose, Cope Andrew P, Owen Dylan M
Department of Physics and Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK; London Centre for Nanotechnology and Department of Chemistry, University College London, London WC1H 0AH, UK.
Department of Physics and Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK; Laboratory for Experimental Biophysics, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Cell Rep. 2020 Dec 22;33(12):108523. doi: 10.1016/j.celrep.2020.108523.
Elucidating the mechanisms that controlled T cell activation requires visualization of the spatial organization of multiple proteins on the submicron scale. Here, we use stoichiometrically accurate, multiplexed, single-molecule super-resolution microscopy (DNA-PAINT) to image the nanoscale spatial architecture of the primary inhibitor of the T cell signaling pathway, Csk, and two binding partners implicated in its membrane association, PAG and TRAF3. Combined with a newly developed co-clustering analysis framework, we find that Csk forms nanoscale clusters proximal to the plasma membrane that are lost post-stimulation and are re-recruited at later time points. Unexpectedly, these clusters do not co-localize with PAG at the membrane but instead provide a ready pool of monomers to downregulate signaling. By generating CRISPR-Cas9 knockout T cells, our data also identify that a major risk factor for autoimmune diseases, the protein tyrosine phosphatase non-receptor type 22 (PTPN22) locus, is essential for Csk nanocluster re-recruitment and for maintenance of the synaptic PAG population.
阐明控制T细胞活化的机制需要在亚微米尺度上可视化多种蛋白质的空间组织。在这里,我们使用化学计量精确、多重、单分子超分辨率显微镜(DNA-PAINT)对T细胞信号通路的主要抑制剂Csk以及与其膜结合相关的两个结合伙伴PAG和TRAF3的纳米级空间结构进行成像。结合新开发的共聚类分析框架,我们发现Csk在质膜附近形成纳米级簇,这些簇在刺激后消失,并在随后的时间点重新募集。出乎意料的是,这些簇在膜上并不与PAG共定位,而是提供了一个现成的单体库来下调信号传导。通过生成CRISPR-Cas9基因敲除T细胞,我们的数据还表明,自身免疫性疾病的一个主要风险因素——蛋白酪氨酸磷酸酶非受体22型(PTPN22)基因座,对于Csk纳米簇的重新募集和突触PAG群体的维持至关重要。