Wisna Gde Bimananda Mahardika, Sukhareva Daria, Zhao Jonathan, Chopade Prathamesh, Satyabola Deeksha, Matthies Michael, Roy Subhajit, Wang Chao, Šulc Petr, Yan Hao, Hariadi Rizal F
Department of Physics, Arizona State University, Tempe, Arizona, USA.
Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
bioRxiv. 2025 Aug 19:2023.08.29.555281. doi: 10.1101/2023.08.29.555281.
DNA origami information storage is a promising alternative to silicon-based data storage, offering a secure molecular cryptography technique that conceals information within arbitrarily folded DNA origami nanostructures. Routing, sliding, and interlacing staple strands lead to the creation of a large 700-bit key size. The realization of practical DNA data storage requires high information density, robust security, and accurate and rapid information retrieval. To meet these requirements, advanced readout techniques and large encryption key sizes are essential. In this study, we report an enhanced DNA origami cryptography protocol to encrypt information in 2D and 3D DNA origami structures, increasing the number of possible scaffold routings and increasing the encryption key size. We employed all-DNA-based steganography with fast readout through high-speed 2D and 3D DNA-PAINT super-resolution imaging, which enables higher information density. By combining 2D and 3D DNA-PAINT data with unsupervised clustering, we achieved an accuracy of up to 89% and high ratios of correct-to-wrong readout, despite the significant flexibility in the 3D DNA origami structure shown by oxDNA simulation. Furthermore, we propose design criteria that ensure complete information retrieval for the DNA origami cryptography protocol. Our findings demonstrate that DNA-based cryptography is a highly secure and versatile solution for transmitting and storing information, making it an attractive choice for the post-silicon era.
DNA折纸信息存储是基于硅的数据存储的一种有前景的替代方案,它提供了一种安全的分子加密技术,可将信息隐藏在任意折叠的DNA折纸纳米结构中。引导、滑动和交织钉状链导致创建了一个大的700位密钥大小。实现实用的DNA数据存储需要高信息密度、强大的安全性以及准确快速的信息检索。为满足这些要求,先进的读出技术和大的加密密钥大小至关重要。在本研究中,我们报告了一种增强的DNA折纸加密协议,用于在二维和三维DNA折纸结构中加密信息,增加了可能的支架布线数量并增大了加密密钥大小。我们采用了基于全DNA的隐写术,通过高速二维和三维DNA-PAINT超分辨率成像实现快速读出,这能够实现更高的信息密度。通过将二维和三维DNA-PAINT数据与无监督聚类相结合,尽管oxDNA模拟显示三维DNA折纸结构具有显著的灵活性,但我们仍实现了高达89%的准确率以及高的正确与错误读出比率。此外,我们提出了确保DNA折纸加密协议能够完全检索信息的设计标准。我们的研究结果表明,基于DNA的加密是一种用于传输和存储信息的高度安全且通用的解决方案,使其成为后硅时代的一个有吸引力的选择。