Suppr超能文献

开发一种机器学习算法来预测单髁膝关节置换术后的非计划性出院。

Development of a Machine Learning Algorithm to Predict Nonroutine Discharge Following Unicompartmental Knee Arthroplasty.

机构信息

Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, MI.

Department of Orthopaedic Surgery and Rehabilitation, Iowa University Hospitals and Clinics, Iowa City, IO.

出版信息

J Arthroplasty. 2021 May;36(5):1568-1576. doi: 10.1016/j.arth.2020.12.003. Epub 2020 Dec 4.

Abstract

BACKGROUND

Reliable and effective prediction of discharge destination following unicompartmental knee arthroplasty (UKA) can optimize patient outcomes and system expenditure. The purpose of this study is to develop a machine learning algorithm that can predict nonhome discharge in patients undergoing UKA.

METHODS

A retrospective review of a prospectively collected national surgical outcomes database was performed to identify adult patients who underwent UKA from 2015 to 2019. Nonroutine discharge was defined as discharge to a location other than home. Five machine learning algorithms were developed to predict this outcome. Performance of the algorithms was assessed through discrimination, calibration, and decision curve analysis.

RESULTS

Overall, of the 7275 patients included, 263 (3.6) patients were unable to return home upon discharge following UKA. The factors determined most important for identification of candidates for nonroutine discharge were total hospital length of stay, preoperative hematocrit, body mass index, preoperative sodium, American Society of Anesthesiologists classification, gender, and functional status. The extreme boosted model achieved the best performance based on discrimination (area under the curve = 0.875), calibration, and decision curve analysis. This model was integrated into a web-based open access application able to provide both predictions and explanations.

CONCLUSION

The present model can, following appropriate external validation, be used to augment clinician decision-making in patients undergoing elective UKA. Patients with high preoperative probabilities of nonroutine discharge based on nonmodifiable risk factors should be counseled to start the insurance authorization process with case management to avoid unnecessary inpatient stay, and those with modifiable risk can attempt prehabilitation to optimize these parameters before surgery.

摘要

背景

可靠且有效的膝关节单髁置换术(UKA)出院去向预测,可以优化患者结局和系统支出。本研究的目的是开发一种机器学习算法,以预测接受 UKA 治疗的患者的非家庭出院情况。

方法

对前瞻性收集的全国手术结果数据库进行回顾性分析,以确定 2015 年至 2019 年接受 UKA 的成年患者。非常规出院定义为出院到家庭以外的其他地方。开发了 5 种机器学习算法来预测这一结果。通过区分度、校准和决策曲线分析评估算法的性能。

结果

在 7275 例患者中,共有 263 例(3.6%)患者在接受 UKA 后出院时无法返回家中。确定非常规出院候选者的最重要因素是总住院时间、术前血细胞比容、体重指数、术前钠、美国麻醉师协会分类、性别和功能状态。极端增强模型基于区分度(曲线下面积为 0.875)、校准和决策曲线分析,实现了最佳性能。该模型被整合到一个基于网络的开放获取应用程序中,能够提供预测和解释。

结论

该模型在经过适当的外部验证后,可以用于增强接受选择性 UKA 治疗的患者的临床医生决策。基于不可改变的风险因素,术前非常规出院概率较高的患者应接受咨询,以便与病例管理一起开始保险授权流程,以避免不必要的住院治疗,而可改变的风险因素可以尝试进行术前康复,以优化这些参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验