Maksudov Farkhad, Kononova Olga, Llauró Aida, Ortega-Esteban Alvaro, Douglas Trevor, Condezo Gabriela N, Martín Carmen San, Marx Kenneth A, Wuite Gijs J L, Roos Wouter H, de Pablo Pedro J, Barsegov Valeri
Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States.
Department of Condensed Matter Physics and Condensed Matter Physics Center, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Acta Biomater. 2021 Mar 1;122:263-277. doi: 10.1016/j.actbio.2020.12.043. Epub 2020 Dec 28.
We developed the Fluctuating Nonlinear Spring (FNS) model to describe the dynamics of mechanical deformation of biological particles, such as virus capsids. The theory interprets the force-deformation spectra in terms of the "Hertzian stiffness" (non-linear regime of a particle's small-amplitude deformations), elastic constant (large-amplitude elastic deformations), and force range in which the particle's fracture occurs. The FNS theory enables one to quantify the particles' elasticity (Young's moduli for Hertzian and bending deformations), and the limits of their strength (critical forces, fracture toughness) and deformability (critical deformations) as well as the probability distributions of these properties, and to calculate the free energy changes for the particle's Hertzian, elastic, and plastic deformations, and eventual fracture. We applied the FNS theory to describe the protein capsids of bacteriophage P22, Human Adenovirus, and Herpes Simplex virus characterized by deformations before fracture that did not exceed 10-19% of their size. These nanoshells are soft (~1-10-GPa elastic modulus), with low ~50-480-kPa toughness - a regime of material behavior that is not well understood, and with the strength increasing while toughness decreases with their size. The particles' fracture is stochastic, with the average values of critical forces, critical deformations, and fracture toughness comparable with their standard deviations. The FNS theory predicts 0.7-MJ/mol free energy for P22 capsid maturation, and it could be extended to describe uniaxial deformation of cylindrical microtubules and ellipsoidal cellular organelles.
我们开发了波动非线性弹簧(FNS)模型来描述生物颗粒(如病毒衣壳)的机械变形动力学。该理论根据“赫兹刚度”(颗粒小振幅变形的非线性区域)、弹性常数(大振幅弹性变形)以及颗粒发生断裂的力范围来解释力-变形谱。FNS理论使人们能够量化颗粒的弹性(赫兹变形和弯曲变形的杨氏模量)、强度极限(临界力、断裂韧性)和可变形性极限(临界变形)以及这些特性的概率分布,并计算颗粒的赫兹变形、弹性变形和塑性变形以及最终断裂的自由能变化。我们应用FNS理论来描述噬菌体P22、人类腺病毒和单纯疱疹病毒的蛋白质衣壳,其特征是断裂前的变形不超过其大小的10 - 19%。这些纳米壳很软(弹性模量约为1 - 10 GPa),韧性较低(约为50 - 480 kPa)——这种材料行为模式尚未得到很好的理解,并且其强度随着尺寸增加而增加,而韧性则随着尺寸减小。颗粒的断裂是随机的,临界力、临界变形和断裂韧性的平均值与其标准偏差相当。FNS理论预测P22衣壳成熟的自由能为0.7 MJ/mol,并且它可以扩展到描述圆柱形微管和椭圆形细胞器的单轴变形。