Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States.
Department of Radiation Oncology, University of California, Irvine 92697-2695, United States.
Neurobiol Learn Mem. 2021 Feb;178:107367. doi: 10.1016/j.nlm.2020.107367. Epub 2020 Dec 24.
Deep space travel presents a number of measurable risks including exposure to a spectrum of radiations of varying qualities, termed galactic cosmic radiation (GCR) that are capable of penetrating the spacecraft, traversing through the body and impacting brain function. Using rodents, studies have reported that exposure to simulated GCR leads to cognitive impairments associated with changes in hippocampus function that can persist as long as one-year post exposure with no sign of recovery. Whether memory can be updated to incorporate new information in mice exposed to GCR is unknown. Further, mechanisms underlying long lasting impairments in cognitive function as a result of GCR exposure have yet to be defined. Here, we examined whether whole body exposure to simulated GCR using 6 ions and doses of 5 or 30 cGy interfered with the ability to update an existing memory or impact hippocampal synaptic plasticity, a cellular mechanism believed to underlie memory processes, by examining long term potentiation (LTP) in acute hippocampal slices from middle aged male mice 3.5-5 months after radiation exposure. Using a modified version of the hippocampus-dependent object location memory task developed by our lab termed "Objects in Updated Locations" (OUL) task we find that GCR exposure impaired hippocampus-dependent memory updating and hippocampal LTP 3.5-5 months after exposure. Further, we find that impairments in LTP are reversed through one-time systemic subcutaneous injection of the histone deacetylase 3 inhibitor RGFP 966 (10 mg/kg), suggesting that long lasting impairments in cognitive function may be mediated at least in part, through epigenetic mechanisms.
深空旅行存在许多可衡量的风险,包括暴露于各种不同质量的辐射中,这些辐射被称为银河宇宙辐射(GCR),它们能够穿透航天器,穿过人体并影响大脑功能。通过使用啮齿动物,研究报告称,暴露于模拟的 GCR 会导致与海马体功能变化相关的认知障碍,这种变化可能会持续长达一年,并且没有恢复的迹象。暴露于 GCR 的老鼠的记忆是否能够更新以纳入新信息尚不清楚。此外,由于 GCR 暴露导致认知功能持久受损的机制尚未确定。在这里,我们使用 6 种离子和 5 或 30 cGy 的剂量检查了全身暴露于模拟 GCR 是否会干扰更新现有记忆的能力,或影响海马突触可塑性,这是一种被认为是记忆过程基础的细胞机制,通过检查中年雄性小鼠辐射后 3.5-5 个月急性海马切片中的长时程增强(LTP)。我们使用了我们实验室开发的基于海马的物体位置记忆任务的一种改良版本,称为“更新位置的物体”(OUL)任务,发现 GCR 暴露会损害海马体依赖性记忆更新和海马体 LTP 3.5-5 个月后。此外,我们发现通过一次性系统皮下注射组蛋白去乙酰化酶 3 抑制剂 RGFP 966(10mg/kg)可以逆转 LTP 损伤,这表明认知功能的持久损伤可能至少部分通过表观遗传机制介导。