Suppr超能文献

小胶质细胞耗竭减轻氦离子辐照诱导的脑损伤。

Mitigation of helium irradiation-induced brain injury by microglia depletion.

机构信息

Department of Radiation Oncology, University of California, Irvine, CA, USA.

Department of Neurosurgery, Stanford University, Stanford, CA, USA.

出版信息

J Neuroinflammation. 2020 May 19;17(1):159. doi: 10.1186/s12974-020-01790-9.

Abstract

BACKGROUND

Cosmic radiation exposures have been found to elicit cognitive impairments involving a wide-range of underlying neuropathology including elevated oxidative stress, neural stem cell loss, and compromised neuronal architecture. Cognitive impairments have also been associated with sustained microglia activation following low dose exposure to helium ions. Space-relevant charged particles elicit neuroinflammation that persists long-term post-irradiation. Here, we investigated the potential neurocognitive benefits of microglia depletion following low dose whole body exposure to helium ions.

METHODS

Adult mice were administered a dietary inhibitor (PLX5622) of colony stimulating factor-1 receptor (CSF1R) to deplete microglia 2 weeks after whole body helium irradiation (He, 30 cGy, 400 MeV/n). Cohorts of mice maintained on a normal and PLX5622 diet were tested for cognitive function using seven independent behavioral tasks, microglial activation, hippocampal neuronal morphology, spine density, and electrophysiology properties 4-6 weeks later.

RESULTS

PLX5622 treatment caused a rapid and near complete elimination of microglia in the brain within 3 days of treatment. Irradiated animals on normal diet exhibited a range of behavioral deficits involving the medial pre-frontal cortex and hippocampus and increased microglial activation. Animals on PLX5622 diet exhibited no radiation-induced cognitive deficits, and expression of resting and activated microglia were almost completely abolished, without any effects on the oligodendrocyte progenitors, throughout the brain. While PLX5622 treatment was found to attenuate radiation-induced increases in post-synaptic density protein 95 (PSD-95) puncta and to preserve mushroom type spine densities, other morphologic features of neurons and electrophysiologic measures of intrinsic excitability were relatively unaffected.

CONCLUSIONS

Our data suggest that microglia play a critical role in cosmic radiation-induced cognitive deficits in mice and, that approaches targeting microglial function are poised to provide considerable benefit to the brain exposed to charged particles.

摘要

背景

宇宙辐射暴露已被发现会引起认知障碍,涉及广泛的潜在神经病理学,包括氧化应激升高、神经干细胞丧失和神经元结构受损。低剂量氦离子暴露后,小胶质细胞持续激活也与认知障碍有关。与空间相关的带电粒子会引发神经炎症,这种炎症会在辐射后长期存在。在这里,我们研究了低剂量全身暴露于氦离子后小胶质细胞耗竭对潜在神经认知的益处。

方法

成年小鼠在全身氦辐射(He,30 cGy,400 MeV/n)后 2 周给予集落刺激因子 1 受体(CSF1R)的膳食抑制剂(PLX5622)以耗尽小胶质细胞。维持正常和 PLX5622 饮食的小鼠队列使用七种独立的行为任务进行认知功能测试,4-6 周后测试小胶质细胞激活、海马神经元形态、棘密度和电生理特性。

结果

PLX5622 处理在治疗后 3 天内迅速且几乎完全消除了大脑中的小胶质细胞。正常饮食的辐射动物表现出一系列涉及内侧前额叶皮层和海马的行为缺陷,并伴有小胶质细胞激活增加。PLX5622 饮食的动物没有表现出辐射引起的认知缺陷,并且在整个大脑中,静息和激活的小胶质细胞的表达几乎完全被消除,而对少突胶质细胞前体细胞没有任何影响。虽然发现 PLX5622 处理可减轻辐射诱导的突触后密度蛋白 95(PSD-95)斑点增加,并保留蘑菇状棘密度,但神经元的其他形态特征和内在兴奋性的电生理测量相对不受影响。

结论

我们的数据表明,小胶质细胞在小鼠宇宙辐射诱导的认知障碍中起着关键作用,并且针对小胶质细胞功能的方法有可能为暴露于带电粒子的大脑提供巨大益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/7236926/e7beca9b742e/12974_2020_1790_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验