Department of Pharmacology and Toxicology, College of Natural Sciences, Michigan State University, East Lansing, MI 48824, USA.
Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
Environ Int. 2021 Feb;147:106301. doi: 10.1016/j.envint.2020.106301. Epub 2020 Dec 22.
Predictions from physiologically based toxicokinetic (PBTK) models can help inform human health risk assessment for potentially toxic chemicals in the environment. Bisphenol S (BPS) is the second most abundant bisphenol detected in humans in the United States, after bisphenol A (BPA). We have recently demonstrated that BPS, much like BPA, can cross the placental barrier and disrupt placental function. Differences in physicochemical properties, toxicokinetics, and exposure outcomes between BPA and other bisphenols prevent direct extrapolation of existing BPA PBTK models to BPS. The current study aimed to develop pregnancy-specific PBTK (p-PBTK) models for BPA and BPS, using a common p-PBTK model structure. Novel paired maternal and fetal pregnancy data sets for total, unconjugated, and conjugated BPA and BPS plasma concentrations from three independent studies in pregnant sheep were used for model calibration. The nine-compartment (maternal blood, liver, kidney, fat, placenta and rest of body, and fetal liver, blood and rest of body) models simulated maternal and fetal experimental data for both BPA and BPS within one standard deviation for the majority of the experimental data points, highlighting the robustness of both models. Simulations were run to examine fetal exposure following daily maternal exposure to BPA or BPS at their tolerable daily intake dose over a two-week period. These predictive simulations show fetal accumulation of both bisphenols over time. Interestingly, the steady-state approximation following this dosing strategy achieved a fetal concentration of unconjugated BPA to levels observed in cord blood from human biomonitoring studies. These models advance our understanding of bisphenolic compound toxicokinetics during pregnancy and may be used as a quantitative comparison tool in future p-PBTK models for related chemicals.
基于生理的毒代动力学(PBTK)模型的预测有助于为环境中具有潜在毒性的化学物质进行人体健康风险评估。双酚 S(BPS)是继双酚 A(BPA)之后,美国人体内检测到的第二丰富的双酚。我们最近的研究表明,BPS 与 BPA 非常相似,可以穿过胎盘屏障并扰乱胎盘功能。BPA 和其他双酚类物质在理化性质、毒代动力学和暴露结果方面存在差异,这使得不能直接将现有的 BPA PBTK 模型外推到 BPS。本研究旨在使用共同的妊娠 PBTK(p-PBTK)模型结构,为 BPA 和 BPS 开发妊娠特异性 PBTK(p-PBTK)模型。三个独立的绵羊妊娠研究中,总、未结合和结合的 BPA 和 BPS 血浆浓度的母体和胎儿配对妊娠数据集被用于模型校准。九个隔室(母体血液、肝脏、肾脏、脂肪、胎盘和身体其他部位,以及胎儿肝脏、血液和身体其他部位)模型模拟了 BPA 和 BPS 的母体和胎儿实验数据,对于大多数实验数据点,模型模拟都在一个标准差内,突出了两个模型的稳健性。模拟了母体每日暴露于可耐受日摄入量的 BPA 或 BPS 后,胎儿的暴露情况,持续两周。这些预测性模拟显示,随着时间的推移,胎儿会积累两种双酚类物质。有趣的是,在这种给药策略下,稳态近似达到了未结合 BPA 的胎儿浓度,达到了人体生物监测研究中脐带血中的水平。这些模型推进了我们对妊娠期间双酚类化合物毒代动力学的理解,并且可能在未来的相关化学物质的 p-PBTK 模型中被用作定量比较工具。