Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
K1-MET GmbH, Stahlstraße 14, 4020 Linz, Austria.
Bioresour Technol. 2021 Mar;323:124573. doi: 10.1016/j.biortech.2020.124573. Epub 2020 Dec 28.
In this study, the impact of gas composition (i.e. CO, CO and H partial pressures) on CO utilization, growth, and acetate production was investigated in batch and continuous cultures of A. woodii. Based on an industrial blast furnace gas, H blending was used to study the impact of H availability on CO fixation alone and together with CO using idealized gas streams. With H available as an additional energy source, net CO fixation and CO, CO and H co-utilization was achieved in gas-limited fermentations. Using industrial blast furnace gas, up to 15.1 g l acetate were produced in continuous cultures. Flux balance analysis showed that intracellular fluxes and total ATP production were dependent on the availability of H and CO. Overall, H blending was shown to be a suitable control strategy for gas fermentations and demonstrated that A. woodii is an interesting host for CO fixation from industrial gas streams.
在这项研究中,我们考察了气体成分(即 CO、CO 和 H 的分压)对 A. woodii 分批和连续培养中 CO 利用、生长和乙酸盐生产的影响。基于工业高炉气,通过混合 H 来研究 H 的可用性对单独固定 CO 以及与 CO 共同利用的影响,同时使用理想化的气体流。由于 H 可作为额外的能源,在气体限制发酵中实现了净 CO 固定以及 CO、CO 和 H 的共同利用。使用工业高炉气,在连续培养中可生产高达 15.1 g/L 的乙酸盐。通量平衡分析表明,细胞内通量和总 ATP 产生取决于 H 和 CO 的可用性。总的来说,混合 H 被证明是一种适用于气体发酵的控制策略,并表明 A. woodii 是从工业气体流中固定 CO 的有趣宿主。