Suppr超能文献

由两个小分子无机化合物超快光诱导形成碳氢键

Ultrafast photoinduced C-H bond formation from two small inorganic molecules.

作者信息

Jiang Zhejun, Huang Hao, Lu Chenxu, Zhou Lianrong, Pan Shengzhe, Qiang Junjie, Shi Menghang, Ye Zhengjun, Lu Peifen, Ni Hongcheng, Zhang Wenbin, Wu Jian

机构信息

State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China.

Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.

出版信息

Nat Commun. 2024 Apr 2;15(1):2854. doi: 10.1038/s41467-024-47137-3.

Abstract

The formation of carbon-hydrogen (C-H) bonds via the reaction of small inorganic molecules is of great significance for understanding the fundamental transition from inorganic to organic matter, and thus the origin of life. Yet, the detailed mechanism of the C-H bond formation, particularly the time scale and molecular-level control of the dynamics, remain elusive. Here, we investigate the light-induced bimolecular reaction starting from a van der Waals molecular dimer composed of two small inorganic molecules, H and CO. Employing reaction microscopy driven by a tailored two-color light field, we identify the pathways leading to C-H photobonding thereby producing HCO ions, and achieve coherent control over the reaction dynamics. Using a femtosecond pump-probe scheme, we capture the ultrafast formation time, i.e., 198 ± 16 femtoseconds. The real-time visualization and coherent control of the dynamics contribute to a deeper understanding of the most fundamental bimolecular reactions responsible for C-H bond formation, thus contributing to elucidate the emergence of organic components in the universe.

摘要

通过小分子无机分子反应形成碳氢键(C-H)对于理解从无机物到有机物的基本转变,进而理解生命起源具有重要意义。然而,C-H键形成的详细机制,特别是动力学的时间尺度和分子水平控制,仍然难以捉摸。在这里,我们从由两个小分子无机物H和CO组成的范德华分子二聚体出发,研究光诱导双分子反应。利用由定制双色光场驱动的反应显微镜,我们确定了导致C-H光键合从而产生HCO离子的途径,并实现了对反应动力学的相干控制。使用飞秒泵浦-探测方案,我们捕捉到了超快形成时间,即198±16飞秒。动力学的实时可视化和相干控制有助于更深入地理解负责C-H键形成的最基本双分子反应,从而有助于阐明宇宙中有机成分的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a196/10987588/233ef83fd0de/41467_2024_47137_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验