Suppr超能文献

一种用于无人机视角目标检测的全局-局部自适应网络。

A Global-Local Self-Adaptive Network for Drone-View Object Detection.

作者信息

Deng Sutao, Li Shuai, Xie Ke, Song Wenfeng, Liao Xiao, Hao Aimin, Qin Hong

出版信息

IEEE Trans Image Process. 2021;30:1556-1569. doi: 10.1109/TIP.2020.3045636. Epub 2021 Jan 5.

Abstract

Directly benefiting from the deep learning methods, object detection has witnessed a great performance boost in recent years. However, drone-view object detection remains challenging for two main reasons: (1) Objects of tiny-scale with more blurs w.r.t. ground-view objects offer less valuable information towards accurate and robust detection; (2) The unevenly distributed objects make the detection inefficient, especially for regions occupied by crowded objects. Confronting such challenges, we propose an end-to-end global-local self-adaptive network (GLSAN) in this paper. The key components in our GLSAN include a global-local detection network (GLDN), a simple yet efficient self-adaptive region selecting algorithm (SARSA), and a local super-resolution network (LSRN). We integrate a global-local fusion strategy into a progressive scale-varying network to perform more precise detection, where the local fine detector can adaptively refine the target's bounding boxes detected by the global coarse detector via cropping the original images for higher-resolution detection. The SARSA can dynamically crop the crowded regions in the input images, which is unsupervised and can be easily plugged into the networks. Additionally, we train the LSRN to enlarge the cropped images, providing more detailed information for finer-scale feature extraction, helping the detector distinguish foreground and background more easily. The SARSA and LSRN also contribute to data augmentation towards network training, which makes the detector more robust. Extensive experiments and comprehensive evaluations on the VisDrone2019-DET benchmark dataset and UAVDT dataset demonstrate the effectiveness and adaptivity of our method. Towards an industrial application, our network is also applied to a DroneBolts dataset with proven advantages. Our source codes have been available at https://github.com/dengsutao/glsan.

摘要

直接受益于深度学习方法,目标检测近年来取得了显著的性能提升。然而,无人机视角的目标检测仍然具有挑战性,主要有两个原因:(1)与地面视角的目标相比,具有更多模糊的小尺度目标提供的用于精确和稳健检测的有价值信息较少;(2)目标分布不均匀使得检测效率低下,特别是对于被密集目标占据的区域。面对这些挑战,我们在本文中提出了一种端到端的全局-局部自适应网络(GLSAN)。我们的GLSAN中的关键组件包括全局-局部检测网络(GLDN)、一种简单而有效的自适应区域选择算法(SARSA)和一个局部超分辨率网络(LSRN)。我们将全局-局部融合策略集成到一个渐进尺度变化网络中以进行更精确的检测,其中局部精细检测器可以通过裁剪原始图像以进行更高分辨率的检测来自适应地细化全局粗略检测器检测到的目标边界框。SARSA可以动态裁剪输入图像中的密集区域,这是无监督的并且可以很容易地插入到网络中。此外,我们训练LSRN来放大裁剪后的图像,为更精细尺度的特征提取提供更详细的信息,帮助检测器更容易地区分前景和背景。SARSA和LSRN也有助于网络训练的数据增强,这使得检测器更加稳健。在VisDrone2019-DET基准数据集和UAVDT数据集上进行的广泛实验和综合评估证明了我们方法的有效性和适应性。对于工业应用,我们的网络也应用于DroneBolts数据集并显示出优势。我们的源代码已在https://github.com/dengsutao/glsan上提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验