Wu Xin, Hong Danfeng, Chanussot Jocelyn
IEEE Trans Image Process. 2023;32:364-376. doi: 10.1109/TIP.2022.3228497. Epub 2022 Dec 21.
Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerged bright and dark, posing severe demands for obtaining precise object contrast information. For this reason, we in this paper propose a simple and effective "U-Net in U-Net" framework, UIU-Net for short, and detect small objects in infrared images. As the name suggests, UIU-Net embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale representation learning of objects. Moreover, UIU-Net can be trained from scratch, and the learned features can enhance global and local contrast information effectively. More specifically, the UIU-Net model is divided into two modules: the resolution-maintenance deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS integrates Residual U-blocks into a deep supervision network to generate deep multi-scale resolution-maintenance features while learning global context information. Further, IC-A encodes the local context information between the low-level details and high-level semantic features. Extensive experiments conducted on two infrared single-frame image datasets, i.e., SIRST and Synthetic datasets, show the effectiveness and superiority of the proposed UIU-Net in comparison with several state-of-the-art infrared small object detection methods. The proposed UIU-Net also produces powerful generalization performance for video sequence infrared small object datasets, e.g., ATR ground/air video sequence dataset. The codes of this work are available openly at https://github.com/danfenghong/IEEE.
基于学习的红外小目标检测方法目前严重依赖分类主干网络。随着网络深度的增加,这往往会导致小目标丢失和特征可区分性受限。此外,红外图像中的小目标经常出现明暗变化,对获取精确的目标对比度信息提出了严峻要求。因此,我们在本文中提出了一种简单有效的“U-Net in U-Net”框架,简称为UIU-Net,用于检测红外图像中的小目标。顾名思义,UIU-Net将一个小的U-Net嵌入到一个更大的U-Net主干中,实现目标的多层次和多尺度表示学习。此外,UIU-Net可以从头开始训练,学习到的特征可以有效地增强全局和局部对比度信息。更具体地说,UIU-Net模型分为两个模块:分辨率保持深度监督(RM-DS)模块和交互式交叉注意力(IC-A)模块。RM-DS将残差U块集成到深度监督网络中,在学习全局上下文信息的同时生成深度多尺度分辨率保持特征。此外,IC-A对低级细节和高级语义特征之间的局部上下文信息进行编码。在两个红外单帧图像数据集,即SIRST和合成数据集上进行的大量实验表明,与几种先进的红外小目标检测方法相比,所提出的UIU-Net具有有效性和优越性。所提出的UIU-Net在视频序列红外小目标数据集,例如ATR地面/空中视频序列数据集上也具有强大的泛化性能。这项工作的代码可在https://github.com/danfenghong/IEEE上公开获取。