Suppr超能文献

角点和前景面积交并比损失:在边界框回归中更好地定位小目标。

Corner-Point and Foreground-Area IoU Loss: Better Localization of Small Objects in Bounding Box Regression.

机构信息

School of Electrical Engineering and Intelligentization, DongGuan University of Technology, Dongguan 523000, China.

School of Computer Science and Technology, DongGuan University of Technology, Dongguan 523000, China.

出版信息

Sensors (Basel). 2023 May 22;23(10):4961. doi: 10.3390/s23104961.

Abstract

Bounding box regression is a crucial step in object detection, directly affecting the localization performance of the detected objects. Especially in small object detection, an excellent bounding box regression loss can significantly alleviate the problem of missing small objects. However, there are two major problems with the broad Intersection over Union (IoU) losses, also known as Broad IoU losses (BIoU losses) in bounding box regression: (i) BIoU losses cannot provide more effective fitting information for predicted boxes as they approach the target box, resulting in slow convergence and inaccurate regression results; (ii) most localization loss functions do not fully utilize the spatial information of the target, namely the target's foreground area, during the fitting process. Therefore, this paper proposes the Corner-point and Foreground-area IoU loss (CFIoU loss) function by delving into the potential for bounding box regression losses to overcome these issues. First, we use the normalized corner point distance between the two boxes instead of the normalized center-point distance used in the BIoU losses, which effectively suppresses the problem of BIoU losses degrading to IoU loss when the two boxes are close. Second, we add adaptive target information to the loss function to provide richer target information to optimize the bounding box regression process, especially for small object detection. Finally, we conducted simulation experiments on bounding box regression to validate our hypothesis. At the same time, we conducted quantitative comparisons of the current mainstream BIoU losses and our proposed CFIoU loss on the small object public datasets VisDrone2019 and SODA-D using the latest anchor-based YOLOv5 and anchor-free YOLOv8 object detection algorithms. The experimental results demonstrate that YOLOv5s (+3.12% Recall, +2.73% mAP@0.5, and +1.91% mAP@0.5:0.95) and YOLOv8s (+1.72% Recall and +0.60% mAP@0.5), both incorporating the CFIoU loss, achieved the highest performance improvement on the VisDrone2019 test set. Similarly, YOLOv5s (+6% Recall, +13.08% mAP@0.5, and +14.29% mAP@0.5:0.95) and YOLOv8s (+3.36% Recall, +3.66% mAP@0.5, and +4.05% mAP@0.5:0.95), both incorporating the CFIoU loss, also achieved the highest performance improvement on the SODA-D test set. These results indicate the effectiveness and superiority of the CFIoU loss in small object detection. Additionally, we conducted comparative experiments by fusing the CFIoU loss and the BIoU loss with the SSD algorithm, which is not proficient in small object detection. The experimental results demonstrate that the SSD algorithm incorporating the CFIoU loss achieved the highest improvement in the AP (+5.59%) and AP75 (+5.37%) metrics, indicating that the CFIoU loss can also improve the performance of algorithms that are not proficient in small object detection.

摘要

边界框回归是目标检测中的关键步骤,直接影响到检测到的物体的定位性能。特别是在小目标检测中,一个优秀的边界框回归损失可以显著缓解小目标的漏检问题。然而,广泛的交并比(IoU)损失有两个主要问题,也称为边界框回归中的宽交并比损失(BIoU 损失):(i)BIoU 损失在预测框接近目标框时,无法为其提供更有效的拟合信息,导致收敛缓慢,回归结果不准确;(ii)大多数定位损失函数在拟合过程中没有充分利用目标的空间信息,即目标的前景区域。因此,本文通过深入研究边界框回归损失的潜力,提出了角点和前景区域 IoU 损失(CFIoU 损失)函数。首先,我们使用两个框之间的归一化角点距离代替 BIoU 损失中使用的归一化中心点距离,这有效地抑制了 BIoU 损失在两个框接近时退化到 IoU 损失的问题。其次,我们在损失函数中添加了自适应的目标信息,为边界框回归过程提供更丰富的目标信息,特别是对于小目标检测。最后,我们在边界框回归上进行了模拟实验,验证了我们的假设。同时,我们在小物体公共数据集 VisDrone2019 和 SODA-D 上使用最新的基于锚点的 YOLOv5 和无锚点的 YOLOv8 目标检测算法,对当前主流的 BIoU 损失和我们提出的 CFIoU 损失进行了定量比较。实验结果表明,YOLOv5s(+3.12%召回率、+2.73%mAP@0.5 和+1.91%mAP@0.5:0.95)和 YOLOv8s(+1.72%召回率和+0.60%mAP@0.5),都包含 CFIoU 损失,在 VisDrone2019 测试集上取得了最高的性能提升。同样,YOLOv5s(+6%召回率、+13.08%mAP@0.5 和+14.29%mAP@0.5:0.95)和 YOLOv8s(+3.36%召回率、+3.66%mAP@0.5 和+4.05%mAP@0.5:0.95),都包含 CFIoU 损失,在 SODA-D 测试集上也取得了最高的性能提升。这些结果表明 CFIoU 损失在小目标检测中的有效性和优越性。此外,我们还通过将 CFIoU 损失和 BIoU 损失与不擅长小目标检测的 SSD 算法进行融合,进行了对比实验。实验结果表明,包含 CFIoU 损失的 SSD 算法在 AP(+5.59%)和 AP75(+5.37%)指标上取得了最高的提升,表明 CFIoU 损失也可以提高不擅长小目标检测的算法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1fa/10223589/99b153852f5a/sensors-23-04961-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验