Suppr超能文献

电压门控钠离子通道 Nav1.7 中慢性疼痛突变的磷酸化增加了电压敏感性。

Phosphorylation of a chronic pain mutation in the voltage-gated sodium channel Nav1.7 increases voltage sensitivity.

机构信息

Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany.

Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany; Department of Anesthesiology, Uniklinik RWTH Aachen University, Aachen, Germany.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100227. doi: 10.1074/jbc.RA120.014288. Epub 2020 Dec 29.

Abstract

Mutations in voltage-gated sodium channels (Navs) can cause alterations in pain sensation, such as chronic pain diseases like inherited erythromelalgia. The mutation causing inherited erythromelalgia, Nav1.7 p.I848T, is known to induce a hyperpolarized shift in the voltage dependence of activation in Nav1.7. So far, however, the mechanism to explain this increase in voltage sensitivity remains unknown. In the present study, we show that phosphorylation of the newly introduced Thr residue explains the functional change. We expressed wildtype human Nav1.7, the I848T mutant, or other mutations in HEK293T cells and performed whole-cell patch-clamp electrophysiology. As the insertion of a Thr residue potentially creates a novel phosphorylation site for Ser/Thr kinases and because Nav1.7 had been shown in Xenopus oocytes to be affected by protein kinases C and A, we used different nonselective and selective kinase inhibitors and activators to test the effect of phosphorylation on Nav1.7 in a human system. We identify protein kinase C, but not protein kinase A, to be responsible for the phosphorylation of T848 and thereby for the shift in voltage sensitivity. Introducing a negatively charged amino acid instead of the putative phosphorylation site mimics the effect on voltage gating to a lesser extent. 3D modeling using the published cryo-EM structure of human Nav1.7 showed that introduction of this negatively charged site seems to alter the interaction of this residue with the surrounding amino acids and thus to influence channel function. These results could provide new opportunities for the development of novel treatment options for patients with chronic pain.

摘要

电压门控钠离子通道(Navs)中的突变可导致疼痛感觉改变,例如遗传性红斑性肢痛症等慢性疼痛疾病。导致遗传性红斑性肢痛症的突变,Nav1.7 p.I848T,已知可诱导 Nav1.7 激活的电压依赖性超极化偏移。然而,迄今为止,解释这种电压敏感性增加的机制尚不清楚。在本研究中,我们表明新引入的 Thr 残基的磷酸化解释了这种功能变化。我们在 HEK293T 细胞中表达野生型人 Nav1.7、I848T 突变体或其他突变体,并进行全细胞膜片钳电生理学实验。由于 Thr 残基的插入可能为 Ser/Thr 激酶创造了一个新的磷酸化位点,并且 Nav1.7 已在非洲爪蟾卵母细胞中显示受蛋白激酶 C 和 A 的影响,因此我们使用不同的非选择性和选择性激酶抑制剂和激活剂来测试磷酸化对人系统中 Nav1.7 的影响。我们确定蛋白激酶 C,而不是蛋白激酶 A,负责 T848 的磷酸化,从而导致电压敏感性的偏移。引入带负电荷的氨基酸而不是假定的磷酸化位点在较小程度上模拟了对电压门控的影响。使用已发表的人类 Nav1.7 的冷冻电镜结构进行的 3D 建模表明,引入该带负电荷的位点似乎改变了该残基与周围氨基酸的相互作用,从而影响通道功能。这些结果可为慢性疼痛患者的新型治疗选择的开发提供新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa3b/7948457/25647d6cbc68/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验